Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795184

ABSTRACT

Aging is accompanied by an increased prevalence of degenerative conditions, including those affecting ocular health, which significantly impact quality of life and increase the burden on healthcare systems. Among these, retinal aging is of particular concern due to its direct link to vision impairment, a leading cause of disability in the elderly. Vision loss in the aging population is associated with heightened risks of cognitive decline, social isolation, and morbidity. This study addresses the critical gap in our understanding of modifiable lifestyle factors, such as physical exercise, that may mitigate retinal aging and its related pathologies. We investigated the effects of different exercise regimens-voluntary (recreational-type) and forced (high-intensity)-on the retinal health of aging Wistar rats (18-month-old), serving as a model for studying the translational potential of exercise interventions in humans. Male Wistar rats were divided into four groups: a young control (3-month-old) for baseline comparison, an aged sedentary control, an aged group engaging in voluntary exercise via a running wheel in their cage, and an aged group subjected to forced exercise on a treadmill for six sessions of 20 min each per week. After a 6-month experimental period, we assessed retinal function via electroretinography (ERG), measured retinal thickness histologically, and analyzed protein expression changes relevant to oxidative stress, inflammation, and anti-aging mechanisms. Our findings reveal that voluntary exercise positively impacts retinal function and morphology, reducing oxidative stress and inflammation markers while enhancing anti-aging protein expression. In contrast, forced exercise showed diminished benefits. These insights underscore the importance of exercise intensity and preference in preserving retinal health during aging. The study highlights the potential of recreational physical activity as a non-invasive strategy to counteract retinal aging, advocating for further research into exercise regimens as preventative therapies for age-related ocular degenerations.

2.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686067

ABSTRACT

This study evaluates the potential therapeutic effects of anthocyanin-rich Prunus cerasus (sour cherry) extract (PCE) on atherosclerosis-associated cardiac dysfunction, described by the impairment of the NO-PKG (nitric oxide-protein kinase G) pathway and the antioxidant capacity. Initially, a rabbit model of atherosclerotic cardiovascular disease was established by administering a cholesterol-rich diet, enabling the examination of the impact of 9 g/kg PCE on the pre-existing compromised cardiovascular condition. After that, the animals were divided into four groups for 12 weeks: the (1) untreated control group; (2) PCE-administered healthy rabbits; (3) hypercholesterolemic (HC) group kept on an atherogenic diet; and (4) PCE-treated HC group. Dyslipidemia, impaired endothelial function, and signs of diastolic dysfunction were evident in hypercholesterolemic rabbits, accompanied by a reduced cardiac expression of eNOS (endothelial nitric oxide synthase), PKG, and SERCA2a (sarco/endoplasmic reticulum calcium ATPase 2a). Subsequent PCE treatment improved the lipid profile and the cardiac function. Additionally, PCE administration was associated with elevated myocardial levels of eNOS, PKG, and SERCA2a, while no significant changes in the vascular status were observed. Western blot analysis further revealed hypercholesterolemia-induced increase and PCE-associated reduction in heme oxygenase-1 expression. The observed effects of anthocyanins indicate their potential as a valuable addition to the treatment regimen for atherosclerosis-associated cardiac dysfunction.


Subject(s)
Atherosclerosis , Heart Diseases , Lagomorpha , Prunus avium , Animals , Rabbits , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Atherosclerosis/complications , Atherosclerosis/drug therapy
3.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36986459

ABSTRACT

Multi-target drug candidate BGP-15 has shown cardioprotective and antiarrhythmic actions in diseased models. Here, we investigated the effects of BGP-15 on ECG and echocardiographic parameters, heart rate variability (HRV), and arrhythmia incidence in telemetry-implanted rats, under beta-adrenergic stimulation by isoproterenol (ISO). In total, 40 rats were implanted with radiotelemetry transmitters. First, dose escalation studies (40-160 mg/kg BGP-15), ECG parameters, and 24 h HRV parameters were assessed. After, rats were divided into Control, Control+BGP-15, ISO, and ISO+BGP-15 subgroups for 2 weeks. ECG recordings were obtained from conscious rats, arrhythmias and HRV parameters were assessed, and echocardiography was carried out. ISO-BGP-15 interaction was also evaluated on an isolated canine cardiomyocyte model. BGP-15 had no observable effects on the ECG waveforms; however, it decreased heart rate. HRV monitoring showed that BGP-15 increased RMSSD, SD1, and HF% parameters. BGP-15 failed to counteract 1 mg/kg ISO-induced tachycardia, but diminished the ECG of ischemia and suppressed ventricular arrhythmia incidence. Under echocardiography, after low-dose ISO injection, BGP-15 administration lowered HR and atrial velocities, and increased end-diastolic volume and ventricle relaxation, but did not counteract the positive inotropic effects of ISO. Two weeks of BGP-15 treatment also improved diastolic function in ISO-treated rats. In isolated cardiomyocytes, BGP-15 prevented 100 nM ISO-induced aftercontractions. Here, we show that BGP-15 increases vagally mediated HRV, reduces arrhythmogenesis, enhances left ventricle relaxation, and suppresses the aftercontractions of cardiomyocytes. As the drug is well tolerated, it may have a clinical value in preventing fatal arrhythmias.

4.
Article in English | MEDLINE | ID: mdl-36674026

ABSTRACT

The COVID-19 pandemic has posed a huge challenge to the world in recent years. The development of vaccines that are as effective as possible and accessible to society offers a promising alternative for addressing the problems caused by this situation as soon as possible and to restore the pre-epidemic system. The present study investigated the preferences of residents in Hungary's second-largest city (Debrecen) for the COVID-19 vaccine. To achieve this aim, a discrete choice experiment was conducted with 1011 participants, and the vaccine characteristics included in the design of the experiment were determined by qualitative methods and a pilot survey: (1) country of origin; (2) efficiency; (3) side effect; and (4) duration of protection. During the data collection at three vaccination sites, respondents were asked to choose between three vaccine alternatives and one "no choice" option in eight decision situations. Discrete choice model estimations were performed using a random parameter logit (RPL) specification with the final model extended to include a latent variable measuring pandemic awareness. The results showed that the vaccine with a Chinese country of origin is the least preferred among the respondents, while the Hungarian and the European vaccines are the most preferred. Furthermore, the increase in the vaccine efficiency level increased the respondents' sense of utility for the vaccine; the short-term side effect was preferred to the long-term one; and the increase in the duration of protection provided by the vaccine increased the respondents' sense of utility for the vaccine. Based on the parameter estimated for the latent variable, it can be concluded that as the level of pandemic awareness (which is more positive among people with chronic diseases and less important among health workers) increases, the choice of a vaccine option becomes more preferred among respondents compared to the "no choice". The results of our investigation could contribute towards increasing compliance in the case of the vaccination-rejecting population, not only for COVID-19, but for any kind of vaccination procedure.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19 Vaccines/therapeutic use , Pandemics/prevention & control , Hungary , Choice Behavior , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
5.
Biomedicines ; 10(5)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35625734

ABSTRACT

Ischemic eye diseases are major causes of vision impairment. Thus, potential retinoprotective effects of N'N-dimethyltryptamine (DMT) were investigated. To inhibit its rapid breakdown by monoamine-oxidase A (MAO-A) enzyme, DMT was co-administered with harmaline, a ß-carboline in the Amazonian Ayahuasca brew. Using ligation, 60 min of ischemia was provoked in eyes of rats, followed by 7 days of reperfusion whilst animals received harmaline alone, DMT + harmaline, or vehicle treatment. After 1 week of reperfusion, electroretinographical (ERG) measurements, histological analysis, and Western blot were performed. Harmaline alone exhibited retinoprotection in ischemia-reperfusion (I/R) which was, surprisingly, counterbalanced by DMT in case of co-administration. As both MAO-A inhibition and DMT increase serotoninergic tone synergistically, communicated to be anti-ischemic, thus, involvement of other pathways was investigated. Based on our experiments, DMT and harmaline exert opposite effects on important ocular proteins such as PARP1, NFκB, MMP9, or HSP70, each having a critical role in a different mechanism of eye-ischemia-related pathologies, e.g., cell death, inflammation, tissue destruction, and oxidative stress. Since DMT is proclaimed to be a promising drug candidate, its potentially undesirable effect on eye-ischemia should be further investigated. Meanwhile, this experiment revealed the potential therapeutic effect of MAO-A inhibitor harmaline in I/R-related eye diseases.

6.
Pharmaceutics ; 14(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35213959

ABSTRACT

Impaired mitochondrial function is associated with several metabolic diseases and health conditions, including insulin resistance and type 2 diabetes (T2DM), as well as ageing. The close relationship between the above-mentioned diseases and cardiovascular disease (CVD) (diabetic cardiomyopathy and age-related cardiovascular diseases) has long been known. Mitochondria have a crucial role: they are a primary source of energy produced in the form of ATP via fatty acid oxidation, tricarboxylic acid (TCA) cycle, and electron transport chain (ETC), and ATP synthase acts as a key regulator of cardiomyocyte survival. Mitochondrial medicine has been increasingly discussed as a promising therapeutic approach in the treatment of CVD. It is well known that vitamin B3 as an NAD+ precursor exists in several forms, e.g., nicotinic acid (niacin) and nicotinamide (NAM). These cofactors are central to cellular homeostasis, mitochondrial respiration, ATP production, and reactive oxygen species generation and inhibition. Increasing evidence suggests that the nicotinic acid derivative BGP-15 ((3-piperidine-2-hydroxy-1-propyl)-nicotinic amidoxime) improves cardiac function by reducing the incidence of arrhythmias and improves diastolic function in different animal models. Our team has valid reasons to assume that these cardioprotective effects of BGP-15 are based on its NAD+ precursor property. Our hypothesis was supported by an animal experiment where ageing ZDF rats were treated with BGP-15 for one year. Haemodynamic variables were measured with echocardiography to detect diabetic cardiomyopathy (DbCM) and age-related CVD as well. In the ZDF group, advanced HF was diagnosed, whereas the BGP-15-treated ZDF group showed diastolic dysfunction only. The significant difference between the two groups was supported by post-mortem Haematoxylin and eosin (HE) and Masson's trichrome staining of cardiac tissues. Moreover, our hypothesis was further confirmed by the significantly elevated Cytochrome c oxidase (MTCO) and ATP synthase activity and expression detected with ELISA and Western blot analysis. To the best of our knowledge, this is the first study to demonstrate the protective effect of BGP-15 on cardiac mitochondrial respiration in an ageing ZDF model.

7.
Br J Pharmacol ; 179(10): 2240-2258, 2022 05.
Article in English | MEDLINE | ID: mdl-34811751

ABSTRACT

BACKGROUND AND PURPOSE: The small molecule BGP-15 has been reported to alleviate symptoms of heart failure and improve muscle function in murine models. Here, we investigated the acute and chronic effects of BGP-15 in a rabbit model of atherosclerotic cardiomyopathy. EXPERIMENTAL APPROACH: Rabbits were maintained on standard chow (control) or atherogenic diet (hypercholesterolemic) for 16 weeks. BGP-15 was administered intravenously (once) or orally (for 16 weeks), to assess acute and chronic effects. Cardiac function was evaluated by echocardiography, endothelium-dependent vasorelaxation was assessed and key molecules in the protein kinase G (PKG) pathway were examined by enzyme-linked immunosorbent assay (ELISA) and western blot. Passive force generation was investigated in skinned cardiomyocytes. KEY RESULTS: Both acute and chronic BGP-15 treatments improved the diastolic performance of the diseased heart. However, vasorelaxation and serum lipid markers were unaffected. Myocardial cyclic guanosine monophosphate (cGMP) levels were elevated in the BGP-15-treated group, along with preserved PKG activity and increased phospholamban Ser16-phosphorylation. PDE5 expression decreased in the BGP-15-treated group and PDE1 was inhibited. Cardiomyocyte passive tension reduced in BGP-15-treated rabbits, the ratio of titin N2BA/N2B isoforms increased and PKG-dependent N2B-titin phosphorylation elevated. CONCLUSIONS AND IMPLICATIONS: BGP-15 treatment improves diastolic function, reduces cardiomyocyte stiffness and restores titin compliance in a rabbit model of atherosclerotic cardiomyopathy by increasing the activity of the cGMP-PKG pathway. As BGP-15 has been proven to be safe, it may be clinically useful in the treatment of diastolic dysfunction.


Subject(s)
Cardiomyopathies , Niacin , Animals , Cardiomyopathies/drug therapy , Diastole , Mice , Myocardium , Oximes , Piperidines , Rabbits
8.
Front Pharmacol ; 13: 1043275, 2022.
Article in English | MEDLINE | ID: mdl-36588715

ABSTRACT

Cannabidiol (CBD), the most extensively studied non-intoxicating phytocannabinoid, has been attracting a lot of interest worldwide owing to its numerous beneficial effects. The aim of this study was to explore the effect that CBD exerts on the adenosinergic system of paced left atria isolated from obese type Zucker Diabetic Fatty (ZDF) rats, maintained on diabetogenic rat chow, received 60 mg/kg/day CBD or vehicle via gavage for 4 weeks. We found that N6-cyclopentyladenosine (CPA), a relatively stable and poorly transported A1 adenosine receptor agonist, elicited a significantly weaker response in the CBD-treated group than in the vehicle-treated one. In contrast, adenosine, a quickly metabolized and transported adenosine receptor agonist, evoked a significantly stronger response in the CBD-treated group than in the vehicle-treated counterpart (excepting its highest concentrations). These results can be explained only with the adenosine transport inhibitory property of CBD (and not with its adenosine receptor agonist activity). If all the effects of CBD are attributed to the interstitial adenosine accumulation caused by CBD in the myocardium, then a significantly increased adenosinergic activation can be assumed during the long-term oral CBD treatment, suggesting a considerably enhanced adenosinergic protection in the heart. Considering that our results may have been influenced by A1 adenosine receptor downregulation due to the chronic interstitial adenosine accumulation, an adenosinergic activation smaller than it seemed cannot be excluded, but it was above the CBD-naïve level in every case. Additionally, this is the first study offering functional evidence about the adenosine transport inhibitory action of CBD in the myocardium.

9.
Int J Mol Sci ; 22(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34575993

ABSTRACT

In previous studies using isolated, paced guinea pig left atria, we observed that FSCPX, known as a selective A1 adenosine receptor antagonist, paradoxically increased the direct negative inotropic response to A1 adenosine receptor agonists (determined using concentration/effect (E/c) curves) if NBTI, a nucleoside transport inhibitor, was present. Based on mathematical modeling, we hypothesized that FSCPX blunted the cardiac interstitial adenosine accumulation in response to nucleoside transport blockade, probably by inhibiting CD39 and/or CD73, which are the two main enzymes of the interstitial adenosine production in the heart. The goal of the present study was to test this hypothesis. In vitro CD39 and CD73 inhibitor assays were carried out; furthermore, E/c curves were constructed in isolated, paced rat and guinea pig left atria using adenosine, CHA and CPA (two A1 adenosine receptor agonists), FSCPX, NBTI and NBMPR (two nucleoside transport inhibitors), and PSB-12379 (a CD73 inhibitor), measuring the contractile force. We found that FSCPX did not show any inhibitory effect during the in vitro enzyme assays. However, we successfully reproduced the paradox effect of FSCPX in the rat model, mimicked the "paradox" effect of FSCPX with PSB-12379, and demonstrated the lipophilia of FSCPX, which could explain the negative outcome of inhibitor assays with CD39 and CD73 dissolved in a water-based solution. Taken together, these three pieces of indirect evidence are strong enough to indicate that FSCPX possesses an additional action besides the A1 adenosine receptor antagonism, which action may be the inhibition of an ectonucleotidase. Incidentally, we found that POM-1 inhibited CD73, in addition to CD39.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Adenosine A1 Receptor Antagonists/pharmacology , Apyrase/antagonists & inhibitors , Receptor, Adenosine A1/metabolism , Xanthines/pharmacology , 5'-Nucleotidase/metabolism , Animals , Antigens, CD/metabolism , Apyrase/metabolism , Guinea Pigs , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...