Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 51(4): 875-96, 2008 Feb 28.
Article in English | MEDLINE | ID: mdl-18254606

ABSTRACT

A preceding paper (Bonfanti et al. J. Med Chem. 2007, 50, 4572-4584) reported the optimization of the pharmacokinetic profile of substituted benzimidazoles by reducing their tissue retention. However, the modifications that were necessary to achieve this goal also led to a significant drop in anti-RSV activity. This paper describes a molecular modeling study followed by a lead optimization program that led to the recovery of the initial potent antiviral activity and the selection of TMC353121 as a clinical candidate.


Subject(s)
Antiviral Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Morpholines/chemical synthesis , Pyridines/chemical synthesis , Respiratory Syncytial Viruses/drug effects , Viral Fusion Proteins/genetics , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Binding Sites , Drug Resistance, Viral , Male , Models, Molecular , Morpholines/pharmacokinetics , Morpholines/pharmacology , Mutation , Protein Binding , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Respiratory Syncytial Viruses/physiology , Sigmodontinae , Structure-Activity Relationship
2.
J Med Chem ; 50(19): 4572-84, 2007 Sep 20.
Article in English | MEDLINE | ID: mdl-17722899

ABSTRACT

We previously reported the discovery of substituted benzimidazole fusion inhibitors with nanomolar activity against respiratory syncytial virus (Andries, K.; et al. Antiviral Res. 2003, 60, 209-219). A lead compound of the series was selected for preclinical evaluation. This drug candidate, JNJ-2408068 (formerly R170591, 1), showed long tissue retention times in several species (rat, dog, and monkey), creating cause for concern. We herein describe the optimization program to develop compounds with improved properties in terms of tissue retention. We have identified the aminoethyl-piperidine moiety as being responsible for the long tissue retention time of 1. We have investigated the replacement or the modification of this group, and we suggest that the pKa of this part of the molecules influences both the antiviral activity and the pharmacokinetic profile. We were able to identify new respiratory syncytial virus inhibitors with shorter half-lives in lung tissue.


Subject(s)
Antiviral Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Piperidines/chemical synthesis , Pyridines/chemical synthesis , Respiratory Syncytial Viruses/drug effects , Viral Fusion Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , HeLa Cells , Humans , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Male , Piperidines/pharmacokinetics , Piperidines/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...