Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5986, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794031

ABSTRACT

Engineering human tissue with diverse cell types and architectures remains challenging. The cerebral cortex, which has a layered cellular architecture composed of layer-specific neurons organised into vertical columns, delivers higher cognition through intricately wired neural circuits. However, current tissue engineering approaches cannot produce such structures. Here, we use a droplet printing technique to fabricate tissues comprising simplified cerebral cortical columns. Human induced pluripotent stem cells are differentiated into upper- and deep-layer neural progenitors, which are then printed to form cerebral cortical tissues with a two-layer organization. The tissues show layer-specific biomarker expression and develop a structurally integrated network of processes. Implantation of the printed cortical tissues into ex vivo mouse brain explants results in substantial structural implant-host integration across the tissue boundaries as demonstrated by the projection of processes and the migration of neurons, and leads to the appearance of correlated Ca2+ oscillations across the interface. The presented approach might be used for the evaluation of drugs and nutrients that promote tissue integration. Importantly, our methodology offers a technical reservoir for future personalized implantation treatments that use 3D tissues derived from a patient's own induced pluripotent stem cells.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Mice , Humans , Induced Pluripotent Stem Cells/metabolism , Cerebral Cortex , Neurons/physiology , Brain , Tissue Engineering/methods , Printing, Three-Dimensional , Tissue Scaffolds
2.
Dev Neurosci ; 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37302394

ABSTRACT

Antidepressants in general, and fluoxetine in particular, increase adult hippocampal neurogenesis (AHN) in mice. Here we asked how the antidepressant fluoxetine affects behavior and AHN in a corticosterone model of depression. In three groups of adult male C57BL/6j mice we administered either vehicle (VEH), corticosterone (CORT) treatment to induce a depression-like state or corticosterone plus a standard dose of fluoxetine (CORT+FLX). Following treatment, mice performed the open field test, the novelty suppressed feeding (NSF) test and the splash test. Neurogenesis was assessed by means of immunohistochemistry using BrdU and neuronal maturation markers. Unexpectedly, 42% of the CORT+FLX-treated mice exhibited severe weight loss, seizures and sudden death. As expected, the CORT treated group had altered behaviors compared to the VEH group, but the CORT+FLX mice that survived did not show any behavioral improvement compared to the CORT group. Antidepressants generally increase neurogenesis and here we also found that compared to CORT mice, CORT+FLX mice that survived had a significantly greater density of BrdU+, BrdU+DCX+ and BrdU+NeuN+ cells, suggesting increased neurogenesis. Moreover, the density of BrdU+NeuN+ cells was increased in an aberrant location, the hilus, of CORT+FLX mice, similar to previous studies describing aberrant neurogenesis following seizures. In conclusion, fluoxetine could induce considerable adverse effects in wild type mice, including seizure-like activity. Fluoxetine-induced neurogenesis increases could be related to this activity, therefore proneurogenic effects of fluoxetine and other antidepressants, especially in the absence of any behavioral therapeutic effects, should be interpreted with caution.

3.
Cell Death Dis ; 14(2): 84, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36746936

ABSTRACT

Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.


Subject(s)
Autoimmune Diseases , Neoplasms , Humans , Mice , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Repressor Proteins/metabolism , Inhibitor of Apoptosis Proteins/metabolism , CD8-Positive T-Lymphocytes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasms/genetics , Autoimmune Diseases/genetics , Cell Line, Tumor
5.
Cereb Cortex ; 32(14): 3057-3067, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35029646

ABSTRACT

The mouse subventricular zone (SVZ) produces neurons throughout life. It is useful for mechanism discovery and is relevant for regeneration. However, the SVZ is deep, significantly restricting live imaging since current methods do not extend beyond a few hundred microns. We developed and adapted three-photon microscopy (3PM) for non-invasive deep brain imaging in live mice, but its utility in imaging the SVZ niche was unknown. Here, with fluorescent dyes and genetic labeling, we show successful 3PM imaging in the whole SVZ, extending to a maximum depth of 1.5 mm ventral to the dura mater. 3PM imaging distinguished multiple SVZ cell types in postnatal and juvenile mice. We also detected fine processes on neural stem cells interacting with the vasculature. Previous live imaging removed overlying cortical tissue or lowered lenses into the brain, which could cause inflammation and alter neurogenesis. We found that neither astrocytes nor microglia become activated in the SVZ, suggesting 3PM does not induce major damage in the niche. Thus, we show for the first time 3PM imaging of the SVZ in live mice. This strategy could be useful for intravital visualization of cell dynamics, molecular, and pathological perturbation and regenerative events.


Subject(s)
Lateral Ventricles , Neural Stem Cells , Animals , Intravital Microscopy , Lateral Ventricles/diagnostic imaging , Lateral Ventricles/metabolism , Mice , Microscopy , Neural Stem Cells/physiology , Neurogenesis/physiology
6.
Cells ; 10(11)2021 11 05.
Article in English | MEDLINE | ID: mdl-34831271

ABSTRACT

Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.


Subject(s)
Galectin 3/metabolism , Nervous System Diseases/pathology , Neurogenesis , Animals , Brain/metabolism , Brain/pathology , COVID-19/metabolism , COVID-19/pathology , Cell Movement , Galectin 3/chemistry , Galectin 3/genetics , Humans , Inflammation , Lateral Ventricles/cytology , Lateral Ventricles/growth & development , Lateral Ventricles/pathology , Nervous System Diseases/metabolism , Neural Stem Cells/cytology , Signal Transduction
7.
WIREs Mech Dis ; 13(6): e1526, 2021 11.
Article in English | MEDLINE | ID: mdl-34730290

ABSTRACT

Postnatal and adult neurogenesis in the subventricular zone and subgranular zone of animals such as rodents and non-human primates has been observed with many different technical approaches. Since most techniques used in animals cannot be used in humans, the majority of human neurogenesis studies rely on postmortem immunohistochemistry. This technique is difficult in human tissue, due to poor and variable preservation of antigens and samples. Nevertheless, a survey of the literature reveals that most published studies provide evidence for childhood and adult neurogenesis in the human brain stem cell niches. There are some conflicting results even when assessing the same markers and when using the same antibodies. Focusing on immunohistochemical studies on post-mortem human sections, we discuss the relative robustness of the literature on adult neurogenesis. We also discuss the response of the subventricular and subgranular zones to human disease, showing that the two niches can respond differently and that the stage of disease impacts neurogenesis levels. Thus, we highlight strong evidence for adult human neurogenesis, discuss other work that did not find it, describe obstacles in analysis, and offer other approaches to evaluate the neurogenic potential of the subventricular and subgranular zones of Homo sapiens. This article is categorized under: Neurological Diseases > Stem Cells and Development Reproductive System Diseases > Stem Cells and Development.


Subject(s)
Neural Stem Cells , Animals , Brain , Child , Humans , Immunohistochemistry , Lateral Ventricles , Neurogenesis
8.
Aging (Albany NY) ; 13(14): 18131-18149, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34319910

ABSTRACT

In recent years, the number of patients with neurodegenerative illness such as Alzheimer's disease (AD) has increased with the aging of the population. In this study, we evaluated the effect of Grape skin extract (GSE) on neurotypic SH-SY5Y cells as an in vitro AD model, murine neurospheres as an ex vivo neurogenesis model and SAMP8 mice as an in vivo AD model. Our in vitro result showed that pre-treatment of SH-SY5Y cells with GSE ameliorated Aß-induced cytotoxicity. Moreover, GSE treatment significantly decreased the number of neurospheres, but increased their size suggesting reduced stem cell self-renewal but increased proliferation. Our in vivo Morris water maze test indicated that GSE improves learning and memory in SAMP8 mice. To detect proliferation and newborn neurons, we measured BrdU+ cells in the dentate gyrus (DG). GSE treatment increased the number of BrdU+ cells in the DG of SAMP8 mice. Finally, we showed that GSE induced a decrease in inflammatory cytokines and an increase in neurotransmitters in the cerebral cortex of SAMP8 mice. These results suggested that GSE increased neurogenic zone proliferation and memory but decreased oxidative stress associated with pro-inflammatory cytokines in aging, thus protecting neurons.


Subject(s)
Alzheimer Disease/prevention & control , Cell Proliferation/drug effects , Neural Stem Cells/drug effects , Plant Extracts/pharmacology , Spatial Learning/drug effects , Alzheimer Disease/pathology , Animals , Behavior, Animal/drug effects , Cerebral Cortex/drug effects , Disease Models, Animal , Male , Maze Learning/drug effects , Mice , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Oxidative Stress , Vitis/chemistry
9.
Front Neuroanat ; 14: 581685, 2020.
Article in English | MEDLINE | ID: mdl-33281566

ABSTRACT

Schizophrenia (SCH) and autism spectrum disorder (ASD) share several common aetiological and symptomatic features suggesting they may be included in a common spectrum. For example, recent results suggest that excitatory/inhibitory imbalance is relevant in the etiology of SCH and ASD. Numerous studies have investigated this imbalance in regions like the ventromedial and dorsolateral prefrontal cortex (DLPFC). However, relatively little is known about neuroanatomical changes that could reduce inhibition in subcortical structures, such as the caudate nucleus (CN), in neuropsychiatric disorders. We recently showed a significant decrease in calretinin-immunopositive (CR-ip) interneuronal density in the CN of patients with ASD without significant change in the density of neuropeptide Y-immunopositive (NPY-ip) neurons. These subtypes together constitute more than 50% of caudate interneurons and are likely necessary for maintaining excitatory/inhibitory balance. Consequently, and since SCH and ASD share characteristic features, here we tested the hypothesis, that the density of CR-ip neurons in the CN is decreased in patients with SCH. We used immunohistochemistry and qPCR for CR and NPY in six patients with schizophrenia and six control subjects. As expected, small, medium and large CR-ip interneurons were detected in the CN. We found a 38% decrease in the density of all CR-ip interneurons (P < 0.01) that was driven by the loss of the small CR-ip interneurons (P < 0.01) in patients with SCH. The densities of the large CR-ip and of the NPY-ip interneurons were not significantly altered. The lower density detected could have been due to inflammation-induced degeneration. However, the state of microglial activation assessed by quantification of ionized calcium-binding adapter molecule 1 (Iba1)- and transmembrane protein 119 (TMEM119)-immunopositive cells showed no significant difference between patients with SCH and controls. Our results warrant further studies focussing on the role of CR-ip neurons and on the striatum being a possible hub for information selection and regulation of associative cortical fields whose function have been altered in SCH.

10.
Front Cell Dev Biol ; 8: 573487, 2020.
Article in English | MEDLINE | ID: mdl-33123536

ABSTRACT

Age-related biological alterations in brain function increase the risk of mild cognitive impairment and dementia, a global problem exacerbated by aging populations in developed nations. Limited pharmacological therapies have resulted in attention turning to the promising role of medicinal plants and dietary supplements in the treatment and prevention of dementia. Sugarcane (Saccharum officinarum L.) top, largely considered as a by-product because of its low sugar content, in fact contains the most abundant amounts of antioxidant polyphenols relative to the rest of the plant. Given the numerous epidemiological studies on the effects of polyphenols on cognitive function, in this study, we analyzed polyphenolic constituents of sugarcane top and examined the effect of sugarcane top ethanolic extract (STEE) on a range of central nervous system functions in vitro and in vivo. Orally administrated STEE rescued spatial learning and memory deficit in the senescence-accelerated mouse prone 8 (SAMP8) mice, a non-transgenic strain that spontaneously develops a multisystemic aging phenotype including pathological features of Alzheimer's disease. This could be correlated with an increased number of hippocampal newborn neurons and restoration of cortical monoamine levels in STEE-fed SAMP8 mice. Global genomic analysis by microarray in cerebral cortices showed multiple potential mechanisms for the cognitive improvement. Gene set enrichment analysis (GSEA) revealed biological processes such as neurogenesis, neuron differentiation, and neuron development were significantly enriched in STEE-fed mice brain compared to non-treated SAMP8 mice. Furthermore, STEE treatment significantly regulated genes involved in neurotrophin signaling, glucose metabolism, and neural development in mice brain. Our in vitro results suggest that STEE treatment enhances the metabolic activity of neuronal cells promoting glucose metabolism with significant upregulation of genes, namely PGK1, PGAM1, PKM, and PC. STEE also stimulated proliferation of human neural stem cells (hNSCs), regulated bHLH factor expression and induced neuronal differentiation and astrocytic process lengthening. Altogether, our findings suggest the potential of STEE as a dietary intervention, with promising implications as a novel nutraceutical for cognitive health.

11.
Stem Cell Reports ; 15(3): 789-802, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32763162

ABSTRACT

The subventricular zone of the mammalian brain is the major source of adult born neurons. These neuroblasts normally migrate long distances to the olfactory bulbs but can be re-routed to locations of injury and promote neuroregeneration. Mechanistic understanding and pharmacological targets regulating neuroblast migration is sparse. Furthermore, lack of migration assays limits development of pharmaceutical interventions targeting neuroblast recruitment. We therefore developed a physiologically relevant 3D neuroblast spheroid migration assay that permits the investigation of large numbers of interventions. To verify the assay, 1,012 kinase inhibitors were screened for their effects on migration. Several induced significant increases or decreases in migration. MuSK and PIK3CB were selected as putative targets and their knockdown validated increased neuroblast migration. Thus, compounds identified through this assay system could be explored for their potential in augmenting neuroblast recruitment to sites of injury for neuroregeneration, or for decreasing malignant invasion.


Subject(s)
Biological Assay/methods , Cell Movement , Neurons/cytology , Spheroids, Cellular/cytology , Animals , Automation , Cell Movement/drug effects , Class I Phosphatidylinositol 3-Kinases/metabolism , Fluorescent Dyes/metabolism , Gene Knockdown Techniques , Image Processing, Computer-Assisted , Lateral Ventricles/cytology , Mice , Neurons/drug effects , Neurons/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Cholinergic/metabolism , Reproducibility of Results , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Time-Lapse Imaging
12.
Acta Biomater ; 112: 122-135, 2020 08.
Article in English | MEDLINE | ID: mdl-32512215

ABSTRACT

Stem cells can provide neuro-protection and potentially neuro-replacement to patients suffering from traumatic brain injuries (TBI), with a practical option being delivery via engineered scaffolds. Collagen (Coll) and glycosaminoglycan (GAG) have been used as scaffolds for brain tissue engineering yet they often do not support cell differentiation and survival. In this study, we developed interpenetrating polymer network scaffolds comprising Coll, and incorporating two commonly found GAGs in the brain, chondroitin sulfate (CS) and/or hyaluronic acid (HA). We seeded these scaffolds with mouse neural stem cells from the subventricular zone (SVZ) niche. Compared to Coll-alone, all other substrates decreased the percent of nestin+ stem cells. Coll-CS-HA was more efficient at suppressing nestin expression than the other scaffolds; all SVZ cells lost nestin expression within 7 days of culture. In contrast to nestin, the percentage of microtubule associated protein 2 (MAP2+) neurons was greater in scaffolds containing, CS, HA or CS-HA, compared to Coll alone. Finally, Coll-CS increased the percentage of glial fibrillary acidic protein (GFAP+) astrocytes compared to Coll scaffolds. Overall, this work shows that Coll-HA and Coll-CS-HA scaffolds selectively enhance neurogenesis and may be advantageous in tissue engineering therapy for TBI. STATEMENT OF SIGNIFICANCE: Brain injury is devastating yet with few options for repair. Stem cells that reside in the subventricular zone (SVZ) only repair damage inefficiently due to poor control of their cellular progeny and unsuitable extracellular matrix substrates. To solve these problems, we have systematically generated collagen (Coll) scaffolds with interpenetrating polymer networks (IPN) of hyaluronic acid (HA) or chondroitin sulfate proteoglycans (CS) or both. The scaffolds had defined pore sizes, similar mechanical properties and all three stimulated neurogenesis, whereas only CS stimulated astrocyte genesis. Overall, this work suggests that Coll-HA and Coll-CS-HA scaffolds selectively enhance neurogenesis and may be advantageous in tissue engineering therapy for brain repair.


Subject(s)
Chondroitin Sulfates , Tissue Engineering , Animals , Brain , Cells, Cultured , Collagen , Humans , Hyaluronic Acid , Mice , Polymers , Tissue Scaffolds
13.
Adv Mater ; 32(31): e2002183, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32537827

ABSTRACT

Current understanding of human brain development is rudimentary due to suboptimal in vitro and animal models. In particular, how initial cell positions impact subsequent human cortical development is unclear because experimental spatial control of cortical cell arrangement is technically challenging. 3D cell printing provides a rapid customized approach for patterning. However, it has relied on materials that do not represent the extracellular matrix (ECM) of brain tissue. Therefore, in the present work, a lipid-bilayer-supported printing technique is developed to 3D print human cortical cells in the soft, biocompatible ECM, Matrigel. Printed human neural stem cells (hNSCs) show high viability, neural differentiation, and the formation of functional, stimulus-responsive neural networks. By using prepatterned arrangements of neurons and astrocytes, it is found that hNSC process outgrowth and migration into cell-free matrix and into astrocyte-containing matrix are similar in extent. However, astrocytes enhance the later developmental event of axon bundling. Both young and mature neurons migrate into compartments containing astrocytes; in contrast, astrocytes do not migrate into neuronal domains signifying nonreciprocal chemorepulsion. Therefore, precise prepatterning by 3D printing allows the construction of natural and unnatural patterns that yield important insights into human cerebral cortex development.


Subject(s)
Bioprinting , Cerebral Cortex/growth & development , Lipid Bilayers/chemistry , Tissue Engineering , Astrocytes/cytology , Astrocytes/metabolism , Cell Differentiation , Cell Movement , Collagen/chemistry , Drug Combinations , Extracellular Matrix/chemistry , Humans , Laminin/chemistry , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Printing, Three-Dimensional , Proteoglycans/chemistry , Tissue Scaffolds/chemistry
14.
Stem Cells ; 38(9): 1149-1158, 2020 09.
Article in English | MEDLINE | ID: mdl-32442340

ABSTRACT

Postnatal subventricular zone (pSVZ) stem and progenitor cell proliferation is regulated by several developmental signaling pathways such as Wnt/ß-catenin. However, the molecular regulation of Wnt function in the pSVZ is poorly understood. We previously showed that Wnt signaling is upregulated in an SVZ gliomagenesis in vivo model. As well, the pro-inflammatory molecule Galectin-3 (Gal-3) increases Wnt signaling in cancer cells and is expressed in the SVZ. Therefore, we asked if Gal-3 has a similar function on Wnt signaling in the pSVZ. We interrogated Wnt signaling using a signaling reporter as well as immunohistochemistry and showed that Wnt signaling predominates upstream in the pSVZ lineage but is downregulated in migrating neuroblasts. Biochemical analysis of SVZ cells, in vivo and in neurosphere stem/progenitor cells, showed that Gal-3 physically interacts with multiple forms of ß-catenin, which is a major downstream regulator of Wnt signaling. Functional analyses demonstrated, in vitro and in vivo, that Gal-3 knockdown increases Wnt signaling and conversely that Gal-3 OE inhibits Wnt/ß-catenin signaling in the pSVZ. This latter result suggested that Gal-3, which is consistently increased in brain injury, may decrease pSVZ proliferation. We showed that Gal-3 OE decreased proliferation without altering cell cycle re-entry and that it increased p27Kip1, a molecule which induces cell cycle exit. Our data uncover a novel regulator of Wnt signaling in the SVZ, Gal-3, which does so in a manner opposite to cancer.


Subject(s)
Galectin 3/metabolism , Lateral Ventricles/metabolism , Wnt Signaling Pathway , Animals , Cell Cycle , Cell Lineage , Cell Proliferation , Down-Regulation , Mice, Inbred C57BL , Protein Binding , Stem Cell Niche , beta Catenin/metabolism
15.
Front Cell Dev Biol ; 8: 600575, 2020.
Article in English | MEDLINE | ID: mdl-33634096

ABSTRACT

Much attention has recently been focused on nutraceuticals, with minimal adverse effects, developed for preventing or treating neurological diseases such as Alzheimer's disease (AD). The present study was conducted to investigate the potential effect on neural development and function of the microalgae Aurantiochytrium sp. as a nutraceutical. To test neuroprotection by the ethanol extract of Aurantiochytrium (EEA) and a derivative, the n-Hexane layer of EEA (HEEA), amyloid-ß-stimulated SH-SY5Y cells, was used as an in vitro AD model. We then assessed the potential enhancement of neurogenesis by EEA and HEEA using murine ex vivo neurospheres. We also administered EEA or HEEA to senescence-accelerated mouse-prone 8 (SAMP8) mice, a non-transgenic strain with accelerated aging and AD-like memory loss for evaluation of spatial learning and memory using the Morris water maze test. Finally, we performed immunohistochemical analysis for assessment of neurogenesis in mice administered EEA. Pretreatment of SH-SY5Y cells with EEA or the squalene-rich fraction of EEA, HEEA, ameliorated amyloid-ß-induced cytotoxicity. Interestingly, only EEA-treated cells showed a significant increase in cell metabolism and intracellular adenosine triphosphate production. Moreover, EEA treatment significantly increased the number of neurospheres, whereas HEEA treatment significantly increased the number of ß-III-tubulin+ young neurons and GFAP+ astrocytes. SAMP8 mice were given 50 mg/kg EEA or HEEA orally for 30 days. EEA and HEEA decreased escape latency in the Morris water maze in SAMP8 mice, indicating improved memory. To detect stem cells and newborn neurons, we administered BrdU for 9 days and measured BrdU+ cells in the dentate gyrus, a neurogenic stem cell niche of the hippocampus. In SAMP8 mice, EEA rapidly and significantly increased the number of BrdU+GFAP+ stem cells and their progeny, BrdU+NeuN+ mature neurons. In conclusion, our data in aggregate indicate that EEA and its constituents could be developed into a nutraceutical for promoting brain health and function against several age-related diseases, particularly AD.

16.
Glia ; 68(2): 435-450, 2020 02.
Article in English | MEDLINE | ID: mdl-31626379

ABSTRACT

Postnatal subventricular zone (SVZ) neural stem cells generate forebrain glia, namely astrocytes and oligodendrocytes. The cues necessary for this process are unclear, despite this phase of brain development being pivotal in forebrain gliogenesis. Galectin-3 (Gal-3) is increased in multiple brain pathologies and thereby regulates astrocyte proliferation and inflammation in injury. To study the function of Gal-3 in inflammation and gliogenesis, we carried out functional studies in mouse. We overexpressed Gal-3 with electroporation and using immunohistochemistry surprisingly found no inflammation in the healthy postnatal SVZ. This allowed investigation of inflammation-independent effects of Gal-3 on gliogenesis. Loss of Gal-3 function via knockdown or conditional knockout reduced gliogenesis, whereas Gal-3 overexpression increased it. Gal-3 overexpression also increased the percentage of striatal astrocytes generated by the SVZ but decreased the percentage of oligodendrocytes. These novel findings were further elaborated with multiple analyses demonstrating that Gal-3 binds to the bone morphogenetic protein receptor one alpha (BMPR1α) and increases bone morphogenetic protein (BMP) signaling. Conditional knockout of BMPR1α abolished the effect of Gal-3 overexpression on gliogenesis. Gain-of-function of Gal-3 is relevant in pathological conditions involving the human forebrain, which is particularly vulnerable to hypoxia/ischemia during perinatal gliogenesis. Hypoxic/ischemic injury induces astrogliosis, inflammation and cell death. We show that Gal-3 immunoreactivity was increased in the perinatal human SVZ and striatum after hypoxia/ischemia. Our findings thus show a novel inflammation-independent function for Gal-3; it is necessary for gliogenesis and when increased in expression can induce astrogenesis via BMP signaling.


Subject(s)
Astrocytes/metabolism , Galectin 3/metabolism , Lateral Ventricles/cytology , Neuroglia/metabolism , Animals , Cell Differentiation/physiology , Cell Movement/physiology , Cerebral Ventricles/cytology , Gene Expression Regulation , Ischemia/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/metabolism , Neurogenesis/physiology , Oligodendroglia/metabolism
17.
Hum Mol Genet ; 28(14): 2283-2294, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31267130

ABSTRACT

Parkinson's disease (PD) is associated with olfactory defects in addition to dopaminergic degeneration. Dopaminergic signalling is necessary for subventricular zone (SVZ) proliferation and olfactory bulb (OB) neurogenesis. Alpha-synuclein (α-syn or Snca) modulates dopaminergic neurotransmission, and SNCA mutations cause familial PD, but how α-syn and its mutations affect adult neurogenesis is unclear. To address this, we studied a bacterial artificial chromosome transgenic mouse expressing the A30P SNCA familial PD point mutation on an Snca-/- background. We confirmed that the SNCA-A30P transgene recapitulates endogenous α-syn expression patterns and levels by immunohistochemical detection of endogenous α-syn in a wild-type mouse and transgenic SNCA-A30P α-syn protein in the forebrain. The number of SVZ stem cells (BrdU+GFAP+) was decreased in SNCA-A30P mice, whereas proliferating (phospho-histone 3+) cells were decreased in Snca-/- and even more so in SNCA-A30P mice. Similarly, SNCA-A30P mice had fewer Mash1+ transit-amplifying SVZ progenitor cells but Snca-/- mice did not. These data suggest the A30P mutation aggravates the effect of Snca loss in the SVZ. Interestingly, calbindin+ and calretinin (CalR)+ periglomerular neurons were decreased in both Snca-/-, and SNCA-A30P mice but tyrosine hydroxylase+ periglomerular OB neurons were only decreased in Snca-/- mice. Cell death decreased in the OB granule layer of Snca-/- and SNCA-A30P mice. In the same region, CalR+ numbers increased in Snca-/- and SNCA-A30P mice. Thus, α-syn loss and human A30P SNCA decrease SVZ proliferation, cell death in the OB and differentially alter interneuron numbers. Similar disruptions in human neurogenesis may contribute to the olfactory deficits, which are observed in PD.


Subject(s)
Interneurons/cytology , Lateral Ventricles/cytology , Olfactory Bulb/cytology , Parkinson Disease/genetics , alpha-Synuclein/genetics , Animals , Calbindin 2/metabolism , Cell Death , Cell Proliferation , Disease Models, Animal , Dopamine/metabolism , Humans , Interneurons/metabolism , Lateral Ventricles/metabolism , Lateral Ventricles/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/genetics , Parkinson Disease/metabolism , Point Mutation , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism
18.
Aging (Albany NY) ; 11(2): 401-422, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30654329

ABSTRACT

Caffeoylquinic acid (CQA) is a natural polyphenol with evidence of antioxidant and neuroprotective effects and prevention of deficits in spatial learning and memory. We studied the cognitive-enhancing effect of 3,4,5-tricaffeoylquinic acid (TCQA) and explored its cellular and molecular mechanism in the senescence-accelerated mouse prone 8 (SAMP8) model of aging and Alzheimer's disease as well as in human neural stem cells (hNSCs). Mice were fed with 5 mg/kg of TCQA for 30 days and were tested in the Morris water maze (MWM). Brain tissues were collected for immunohistochemical detection of bromodeoxyuridine (BrdU) to detect activated stem cells and newborn neurons. TCQA-treated SAMP8 exhibited significantly improved cognitive performance in MWM compared to water-treated SAMP8. TCQA-treated SAMP8 mice also had significantly higher numbers of BrdU+/glial fibrillary acidic protein (GFAP+) and BrdU+/Neuronal nuclei (NeuN+) cells in the dentate gyrus (DG) neurogenic niche compared with untreated SAMP8. In hNSCs, TCQA induced cell cycle arrest at G0/G1, actin cytoskeleton organization, chromatin remodeling, neuronal differentiation, and bone morphogenetic protein signaling. The neurogenesis promoting effect of TCQA in the DG of SAMP8 mice might explain the cognition-enhancing influence of TCQA observed in our study, and our hNSCs in aggregate suggest a therapeutic potential for TCQA in aging-associated diseases.


Subject(s)
Maze Learning/drug effects , Memory/drug effects , Neurogenesis/drug effects , Quinic Acid/analogs & derivatives , Animals , Calcium/metabolism , Cell Line , Humans , Male , Memory/physiology , Mice , Mice, Inbred Strains , Neural Stem Cells , Neurogenesis/physiology , Quinic Acid/pharmacology
19.
NPJ Schizophr ; 4(1): 15, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30038210

ABSTRACT

Schizophrenia is a neurodevelopmental disorder likely caused by environmental and genetic risk factors but functional interactions between the risk factors are unclear. We tested the hypothesis that dysbindin-1 (Dtnbp1) gene mutation combined with postnatal exposure to viral mimetic polyI:C results in schizophrenia-related behavioural changes in adulthood, and mediates polyI:C-induced inflammation in the subventricular zone (SVZ). Adult Sandy (Sdy, Dtnbp1 mutant) mice given early postnatal polyI:C injections displayed reduced prepulse inhibition of startle, reduced locomotion and deficits in novel object recognition. PolyI:C induced a canonical immune response in the SVZ; it increased mRNA expression of its toll-like receptor 3 (Tlr3) and downstream transcription factors RelA and Sp1. PolyI:C also increased SVZ Dtnbp1 mRNA expression, suggesting dysbindin-1 regulates immune responses. Dysbindin-1 loss in Sdy mice blocked the polyI:C-induced increases in mRNA expression of Tlr3, RelA and Sp1 in the SVZ. Dtnbp1 overexpression in SVZ-derived Sdy neurospheres rescued Tlr3, RelA and Sp1 mRNA expression supporting a functional interaction between dysbindin-1 and polyI:C-induced inflammation. Immunohistochemistry showed higher Iba1+ immune cell density in the SVZ of Sdy mice than in WT postnatally. PolyI:C did not alter SVZ Iba1+ cell density but increased CD45+/Iba1- cell numbers in the SVZ of Sdy mice. Finally, polyI:C injections in Sdy, but not WT mice reduced postnatal and adult SVZ proliferation. Together, we show novel functional interactions between the schizophrenia-relevant dysbindin-1 gene and the immune response to polyI:C. This work sheds light on the molecular basis for amplified abnormalities due to combined genetic predisposition and exposure to environmental schizophrenia risk factors.

20.
Prog Neurobiol ; 170: 37-52, 2018 11.
Article in English | MEDLINE | ID: mdl-29654835

ABSTRACT

The adult subventricular zone (SVZ) stem cell niche has proven vital for discovering neurodevelopmental mechanisms and holds great potential in medicine for neurodegenerative diseases. Yet the SVZ holds a dark side - it can become tumorigenic. Glioblastomas can arise from the SVZ via cancer stem cells (CSCs). Glioblastoma and other brain cancers often have dismal prognoses since they are resistant to treatment. In this review we argue that the SVZ is susceptible to cancer because it contains stem cells, migratory progenitors and unusual inflammation. Theoretically, SVZ stem cells can convert to CSCs more readily than can postmitotic neural cells. Additionally, the robust long-distance migration of SVZ progenitors can be subverted upon tumorigenesis to an infiltrative phenotype. There is evidence that the SVZ, even in health, exhibits chronic low-grade cellular and molecular inflammation. Its inflammatory response to brain injuries and disease differs from that of other brain regions. We hypothesize that the SVZ inflammatory environment can predispose cells to novel mutations and exacerbate cancer phenotypes. This can be studied in animal models in which human mutations related to cancer are knocked into the SVZ to induce tumorigenesis and the CSC immune interactions that precede full-blown cancer. Importantly inflammation can be pharmacologically modulated providing an avenue to brain cancer management and treatment. The SVZ is accessible by virtue of its location surrounding the lateral ventricles and CSCs in the SVZ can be targeted with a variety of pharmacotherapies. Thus, the SVZ can yield aggressive tumors but can be targeted via several strategies.


Subject(s)
Brain Neoplasms/physiopathology , Inflammation/physiopathology , Stem Cell Niche/immunology , Animals , Humans , Lateral Ventricles
SELECTION OF CITATIONS
SEARCH DETAIL
...