Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 435(7039): 181-4, 2005 May 12.
Article in English | MEDLINE | ID: mdl-15889085

ABSTRACT

The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of afterglows continue to refine our understanding of GRB progenitors and relativistic shocks, gamma-ray observations alone have not yielded a clear picture of the origin of the prompt emission nor details of the central engine. Only one concurrent visible-light transient has been found and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.

2.
Appl Opt ; 34(34): 7935-44, 1995 Dec 01.
Article in English | MEDLINE | ID: mdl-21068887

ABSTRACT

Extremely broadband grazing-incidence multilayers for hard-x-ray reflection can be obtained by a gradual change of the layer thicknesses down through the structure. Existing approaches for designing similar neutron optics, called supermirrors, are shown to provide respectable performance when applied to x-ray multilayers. However, none of these approaches consider the effects of imperfect layer interfaces and absorption in the overlying layers. Adaptations of neutron designs that take these effects into account are presented, and a thorough analysis of two specific applications (a single hard-x-ray reflector and a hard-x-ray telescope) shows that an improved performance can be obtained. A multilayer whose bilayer thicknesses are given by a power law expression is found to provide the best solution; however, it is only slightly better than some of the adapted neutron designs.

SELECTION OF CITATIONS
SEARCH DETAIL
...