Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35253016

ABSTRACT

Neurosurgical operations are long and intensive medical procedures, during which the surgeon must constantly have an unobscured view of the brain in order to be able to properly operate, and thus must use a variety of tools to clear obstructions (like blood and fluid) from the operating area. Currently, cotton balls are the most versatile and effective option to accomplish this as they absorb fluids, are soft enough to safely manipulate the brain, act as a barrier between other tools and the brain, and function as a spacer to keep anatomies of the brain open and visible during the operation. While cotton balls allow neurosurgeons to effectively improve visibility of the operating area, they may also be accidentally left in the brain upon completion of the surgery. This can lead to a wide range of post-operative risks including dangerous immune responses, additional medical care or surgical operations, and even death. This project seeks to develop a unique medical device that utilizes ultrasound technology in order to minimize cotton retention after neurosurgical procedures in order to reduce undesired post-operative risks, and maximize visibility.

2.
Article in English | MEDLINE | ID: mdl-35350430

ABSTRACT

Cotton balls are used in neurosurgical procedures to assist with hemostasis and improve vision within the operative field. Although the surgeon can reshape pieces of cotton for multiple intraoperative uses, this customizability and scale also places them at perpetual risk of being lost, as blood-soaked cotton balls are visually similar to raw brain tissue. Retained surgical cotton can induce potentially life-threatening immunologic responses, impair postoperative imaging, lead to a textiloma or misdiagnosis, and/or require reoperation. This study investigated three imaging modalities (optical, acoustic, and radiographic) to find the most effective method of identifying foreign bodies during neurosurgery. First, we examined the use of dyes to increase contrast between cotton and surrounding parenchyma (optical approach). Second, we explored the ability to distinguish surgical cotton on or below the tissue surface from brain parenchyma using ultrasound imaging (acoustic approach). Lastly, we analyzed the ability of radiography to differentiate between brain parenchyma and cotton. Our preliminary testing demonstrated that dark-colored cotton is significantly more identifiable than white cotton on the surface level. Additional testing revealed that cotton has noticeable different acoustic characteristics (eg, speed of sound, absorption) from neural tissue, allowing for enhanced contrast in applied ultrasound imaging. Radiography, however, did not present sufficient contrast, demanding further examination. These solutions have the potential to significantly reduce the possibility of intraoperative cotton retention both on and below the surface of the brain, while still providing surgeons with traditional cotton material properties without affecting the surgical workflow.

SELECTION OF CITATIONS
SEARCH DETAIL
...