Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38137627

ABSTRACT

Abdominal aortic aneurysm (AAA) and peripheral artery disease (PAD) share pathophysiological mechanisms including the activation of the fibrinolytic and innate immune system, which explains the analysis of D-dimer and myeloperoxidase (MPO) in both conditions. This study evaluates the diagnostic marker potential of both variables separately and as a combined MPO/D-dimer score for identifying patients with AAA versus healthy individuals or patients with PAD. Plasma levels of MPO and D-dimer were increased in PAD and AAA compared to healthy controls (median for MPO: 13.63 ng/mL [AAA] vs. 11.74 ng/mL [PAD] vs. 9.16 ng/mL [healthy], D-dimer: 1.27 µg/mL [AAA] vs. 0.58 µg/mL [PAD] vs. 0.38 µg/mL [healthy]). The combined MPO/D-dimer score (median 1.26 [AAA] vs. -0.19 [PAD] vs. -0.93 [healthy]) showed an improved performance in distinguishing AAA from PAD when analysed using the receiver operating characteristic curve (area under the curve) for AAA against the pooled data of healthy controls + PAD: 0.728 [MPO], 0.749 [D-dimer], 0.801 [score]. Diagnostic sensitivity and specificity ranged at 82.9% and 70.2% (for score cut-off = 0). These findings were confirmed for a separate collective of AAA patients with 35% simultaneous PAD. Thus, evaluating MPO together with D-dimer in a simple score may be useful for diagnostic detection and the distinction of AAA from athero-occlusive diseases like PAD.

2.
Viruses ; 15(1)2022 12 30.
Article in English | MEDLINE | ID: mdl-36680153

ABSTRACT

Bacterial viruses, or bacteriophages, are highly potent, target-specific antimicrobials. Bacteriophages can be safely applied along the food production chain to aid control of foodborne pathogens. However, bacteriophages are often sensitive to the environments encountered in food matrices and under processing conditions, thus limiting their applicability. We sought to address this challenge by exposing commercially available Listeria monocytogenes bacteriophage, P100, to three stress conditions: desiccation, elevated temperature, and low pH, to select for stress-resistant bacteriophages. The stressed bacteriophage populations lost up to 5.1 log10 in infectivity; however, the surviving subpopulation retained their stress-resistant phenotype through five passages with a maximum of 2.0 log10 loss in infectivity when exposed to the same stressor. Sequencing identified key mutation regions but did not reveal a clear mechanism of resistance. The stress-selected bacteriophage populations effectively suppressed L. monocytogenes growth at a modest multiplicity of infection of 0.35-0.43, indicating no trade-off in lytic ability in return for improved survivability. The stressed subpopulations were tested for survival on food grade stainless steel, during milk pasteurization, and within acidic beverages. Interestingly, air drying on stainless steel and pasteurization in milk led to significantly less stress and titer loss in bacteriophage compared to similar stress under model lab conditions. This led to a diminished benefit for stress-selection, thus highlighting a major challenge in real-life translatability of bacteriophage adaptational evolution.


Subject(s)
Bacteriophages , Listeria monocytogenes , Animals , Bacteriophages/genetics , Stainless Steel , Food Handling , Milk/microbiology , Food Microbiology
3.
Sci Rep ; 9(1): 7631, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113974

ABSTRACT

Most currently available vaccines, particularly live vaccines, require the cold chain, as vaccine efficacy can be significantly hampered if they are not stored in a temperature range of 2-8 °C at all times. This necessity places a tremendous financial and logistical burden on vaccination programs, particularly in the developing world. The development of thermally stable vaccines can greatly alleviate this problem and, in turn, increase vaccine accessibility worldwide. In this paper, we detail a simple and cost-effective method for stabilizing live vaccines that uses FDA-approved materials. To this end, we dried enveloped DNA (Herpes Simplex Virus type 2) and RNA (Influenza A virus) viral vaccines in a pullulan and trehalose mixture. The results of these studies showed that the live-attenuated HSV-2 vaccine retained its efficacy for at least 2 months of storage at 40 °C, while the inactivated influenza vaccine was able to retain its immunogenicity for at least 3 months of storage at 40 °C. This work presents a simple approach that allows thermo-sensitive vaccines to be converted into thermo-stable vaccines that do not require refrigeration, thus contributing to the improvement of vaccine deployment throughout the world.


Subject(s)
Herpes Simplex Virus Vaccines/chemistry , Immobilized Nucleic Acids/chemistry , Influenza Vaccines/chemistry , Membranes, Artificial , Vaccine Potency , Animals , Chlorocebus aethiops , Costs and Cost Analysis , DNA, Viral/chemistry , DNA, Viral/immunology , Dogs , Herpes Simplex Virus Vaccines/economics , Herpes Simplex Virus Vaccines/immunology , Immobilized Nucleic Acids/immunology , Immunogenicity, Vaccine , Influenza Vaccines/economics , Influenza Vaccines/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RNA, Viral/chemistry , RNA, Viral/immunology , Sugars/chemistry , Vero Cells
4.
ACS Biomater Sci Eng ; 4(11): 3802-3808, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-33429601

ABSTRACT

The antimicrobial activity of LISTEX P100, Salmonella CG4, and E. coli AG10 bacteriophages were preserved in pullulan-trehalose mixture as dried films and as coatings on food packaging. The phages encapsulated in pullulan-trehalose films were able to retain infectivity for up to 3 months at ambient storage conditions. Various buffers, disaccharides and disaccharide concentrations were investigated to optimize the long-term stability of the phages in the films. It was found that pullulan and trehalose need to be simultaneously present in the film to provide the stabilizing effect and that the presence of buffers that lead to the formation of crystals in the films must be avoided for phage activity to be maintained. Overall, this study describes a method of preserving bacteriophage activity in a dried format that has great potential for use as coatings, which can be used to create antimicrobial surfaces for food preparation and for food preservation.

SELECTION OF CITATIONS
SEARCH DETAIL
...