Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Molecules ; 28(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298815

ABSTRACT

The aim of the study was to analyze the reversibility of the cycle of graphene oxide (GO), reduced GO, and GO obtained by consecutive reoxidation of reduced GO. Accordingly, GO was heated in three different atmospheres (oxidizing, inert, and reducing, i.e., air, nitrogen, and argon/hydrogen mixture, respectively) at 400 °C to obtain reduced GO with varying composition. The bare GO and the RGO samples were oxidized or reoxidized with HNO3. The thermal properties, composition, bonds, and structure of the samples were investigated with TG/DTA, EDX, Raman spectroscopy, and XRD. Their photocatalytic activity was tested by decomposing methyl orange dye under UV light irradiation.


Subject(s)
Graphite , Oxidation-Reduction , Graphite/chemistry , Ultraviolet Rays , Spectrum Analysis, Raman
2.
Nanomaterials (Basel) ; 13(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37110896

ABSTRACT

In comparison to conventional nano-infiltration approaches, the atomic layer deposition (ALD) technology exhibits greater potential in the fabrication of inverse opals (IOs) for photocatalysts. In this study, TiO2 IO and ultra-thin films of Al2O3 on IO were successfully deposited using thermal or plasma-assisted ALD and vertical layer deposition from a polystyrene (PS) opal template. SEM/EDX, XRD, Raman, TG/DTG/DTA-MS, PL spectroscopy, and UV Vis spectroscopy were used for the characterization of the nanocomposites. The results showed that the highly ordered opal crystal microstructure had a face-centered cubic (FCC) orientation. The proposed annealing temperature efficiently removed the template, leaving the anatase phase IO, which provided a small contraction in the spheres. In comparison to TiO2/Al2O3 plasma ALD, TiO2/Al2O3 thermal ALD has a better interfacial charge interaction of photoexcited electron-hole pairs in the valence band hole to restrain recombination, resulting in a broad spectrum with a peak in the green region. This was demonstrated by PL. Strong absorption bands were also found in the UV regions, including increased absorption due to slow photons and a narrow optical band gap in the visible region. The results from the photocatalytic activity of the samples show decolorization rates of 35.4%, 24.7%, and 14.8%, for TiO2, TiO2/Al2O3 thermal, and TiO2/Al2O3 plasma IO ALD samples, respectively. Our results showed that ultra-thin amorphous ALD-grown Al2O3 layers have considerable photocatalytic activity. The Al2O3 thin film grown by thermal ALD has a more ordered structure compared to the one prepared by plasma ALD, which explains its higher photocatalytic activity. The declined photocatalytic activity of the combined layers was observed due to the reduced electron tunneling effect resulting from the thinness of Al2O3.

3.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36080051

ABSTRACT

In the current research, surface-modified SiO2 nanoparticles were used upon immersion in an applied base fluid (ethylene glycol:water = 1:1). The atomic layer deposition method (ALD) was introduced to obtain a thin layer of TiO2 to cover the surface of SiO2 particles. After the ALD modification, the TiO2 content was monitored by energy dispersive X-ray spectroscopy (EDS). Transmission electron microscopy (TEM) and FT-IR spectroscopy were applied for the particle characterization. The nanofluids contained 0.5, 1.0, and 1.5 volume% solid particles and zeta potential measurements were examined in terms of colloid stability. A rotation viscosimeter and thermal conductivity analyzer were used to study the nanofluids' rheological properties and thermal conductivity. These two parameters were investigated in the temperature range of 20 °C and 60 °C. Based on the results, the thin TiO2 coating significant impacted these parameters.

4.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35808062

ABSTRACT

In this paper, we present a study on thermal conductivity and viscosity of nanofluids containing novel atomic layer deposition surface-modified carbon nanosphere (ALD-CNS) and carbon nanopowder (ALD-CNP) core-shell nanocomposites. The nanocomposites were produced by atomic layer deposition of amorphous TiO2. The nanostructures were characterised by scanning (SEM) and transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, thermogravimetry/differential thermal analysis (TG/DTA) and X-ray powder diffraction (XRD). High-concentration, stable nanofluids were prepared with 1.5, 1.0 and 0.5 vol% nanoparticle content. The thermal conductivity and viscosity of the nanofluids were measured, and their stability was evaluated with Zeta potential measurements. The ALD-CNS enhanced the thermal conductivity of the 1:5 ethanol:water mixture by 4.6% with a 1.5 vol% concentration, and the viscosity increased by 37.5%. The ALD-CNS increased the thermal conductivity of ethylene-glycol by 10.8, whereas the viscosity increased by 15.9%. The use of a surfactant was unnecessary due to the ALD-deposited TiO2 layer.

5.
Molecules ; 27(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35163994

ABSTRACT

Halloysite nanotube (HNT) which is cheap, natural, and easily accessible 1D clay, can be used in many applications, particularly heat transfer enhancement. The aim of this research is to study experimentally the pool boiling heat transfer (PBHT) performance of novel halloysite nanofluids at atmospheric pressure condition from typical horizontal heater. The nanofluids are prepared from halloysite nanotubes (HNTs) nanomaterials-based deionized water (DI water) with the presence of sodium hydroxide (NaOH) solution to control pH = 12 to obtain stable nanofluid. The nanofluids were prepared with dilute volume concentrations of 0.01-0.5 vol%. The performance of PBHT is studied via pool boiling curve and pool boiling heat transfer coefficient (PBHTC) from the typical heater which is the copper horizontal tube with a thickness of 1 mm and a diameter of 22 mm. The temperatures of the heated tube surface are measured to obtain the PBHTC. The results show an improvement of PBHTC for halloysite nanofluids compared to the base fluid. At 0.05 vol% concentration, HNT nanofluid has the best enhancement of 5.8% at moderate heat flux (HF). This indicates that HNT is a potential material in heat transfer applications.

6.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35159644

ABSTRACT

A CFD model was performed with commercial software through the adoption of the finite volume method and a SIMPLE algorithm. SiO2-P25 particles were added to water/ethylene glycol as a base fluid. The result is considered a new hybrid nanofluid (HN) for investigating heat transfer (HT). The volume concentrations were 0.5, 1.0, and 1.5%. The Reynolds number was in the range of 5000-17,000. The heat flux (HF) was 7955 W/m2, and the wall temperature was 340.15 K. The numerical experiments were performed strictly following the rules that one should follow in HT experiments. This is important because many studies related to nanofluid HT overlook these details. The empirical correlations that contain the friction factor perform better with higher Reynolds numbers than the correlations based only on Reynolds and Prandtl numbers. When temperature differences are moderate, researchers may consider using constant properties to lower computational costs, as they may give results that are similar to temperature-dependent ones. Compared with previous research, our simulation results are in agreement with the experiments in real time.

7.
Molecules ; 26(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34641462

ABSTRACT

In this work core/shell composite polymer/TiO2 nanofibers and from those TiO2 nanotubes were prepared. First, poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) fibers were synthetized by electrospinning. They were covered with a 100 nm thick amorphous TiO2 layer by atomic layer deposition at 50 °C. Later the polymer core was removed by two different methods: dissolution and annealing. In the case of dissolution in water, the as-prepared TiO2 nanotubes remained amorphous, while when annealing was used to remove the polymers, the TiO2 crystallized in anatase form. Due to this, the properties of amorphous and crystalline TiO2 nanotubes with exactly the same structure and morphology could be compared. The samples were investigated by SEM-EDX, ATR-IR, UV-Vis, XRD and TG/DTA-MS. Finally, the photocatalytic properties of the TiO2 nanotubes were studied by decomposing methyl-orange dye under UV light. According to the results, crystalline anatase TiO2 nanotubes reached the photocatalytic performance of P25, while amorphous TiO2 nanotubes had observable photocatalytic activity.

8.
Molecules ; 26(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209392

ABSTRACT

An aerial humidity-induced solid-phase hydrolytic transformation of the [Zn(NH3)4]MoO4@2H2O (compound 1@2H2O) with the formation of [(NH4)xH(1-x)Zn(OH)(MoO4)]n (x = 0.92-0.94) coordination polymer (formally NH4Zn(OH)MoO4, compound 2) is described. Based on the isostructural relationship, the powder XRD indicates that the crystal lattice of compound 1@2H2O contains a hydrogen-bonded network of tetraamminezinc (2+) and molybdate (2-) ions, and there are cavities (O4N4(µ-H12) cube) occupied by the two water molecules, which stabilize the crystal structure. Several observations indicate that the water molecules have no fixed positions in the lattice voids; instead, the cavity provides a neighborhood similar to those in clathrates. The @ symbol in the notation is intended to emphasize that the H2O in this compound is enclathrated rather than being water of crystallization. Yet, signs of temperature-dependent dynamic interactions with the wall of the cages can be detected, and 1@2H2O easily releases its water content even on standing and yields compound 2. Surprisingly, hydrolysis products of 1 were observed even in the absence of aerial humidity, which suggests a unique solid-phase quasi-intramolecular hydrolysis. A mechanism involving successive substitution of the ammonia ligands by water molecules and ammonia release is proposed. An ESR study of the Cu-doped compound 2 (2#dotCu) showed that this complex consists of two different Cu2+(Zn2+) environments in the polymeric structure. Thermal decomposition of compounds 1 and 2 results in ZnMoO4 with similar specific surface area and morphology. The ZnMoO4 samples prepared from compounds 1 and 2 and compound 2 in itself are active photocatalysts in the degradation of Congo Red dye. IR, Raman, and UV studies on compounds 1@2H2O and 2 are discussed in detail.

9.
Nanomaterials (Basel) ; 11(3)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671055

ABSTRACT

A comparative research on stability, viscosity (µ), and thermal conductivity (k) of carbon nanosphere (CNS) and carbon nanopowder (CNP) nanofluids was performed. CNS was synthesized by the hydrothermal method, while CNP was provided by the manufacturer. Stable nanofluids at high concentrations 0.5, 1.0, and 1.5 vol% were prepared successfully. The properties of CNS and CNP nanoparticles were analyzed with Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area (SBET), X-ray powder diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), and energy dispersive X-ray analysis (EDX). The CNP nanofluids have the highest k enhancement of 10.61% for 1.5 vol% concentration compared to the base fluid, while the CNS does not make the thermal conductivity of nanofluids (knf) significantly higher. The studied nanofluids were Newtonian. The relative µ of CNS and CNP nanofluids was 1.04 and 1.07 at 0.5 vol% concentration and 30 °C. These results can be explained by the different sizes and crystallinity of the used nanoparticles.

10.
Nanomaterials (Basel) ; 11(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535415

ABSTRACT

Extending the absorption range of TiO2 nanofibers to visible light is a great improvement of the photocatalytic property of TiO2. In this study, TiO2/WO3/C/N nanofibers were prepared by electrospinning using precursors soluble in water then annealing in argon. Titanium(IV) bis(ammonium lactato)dihydroxide (TiBALDH) and ammonium metatungstate (AMT) were used as the precursor for TiO2 and WO3 respectively. Different volume ratios of the precursors were added to a solution of PVP before electrospinning. The fibers were studied by XPS, SEM-EDX, TEM, FTIR, XRD, Raman spectroscopy and UV-VIS diffuse reflectance spectroscopy (DRS). The photocatalytic degradation of methylene blue by the fibers in visible light was investigated. The fibers had anatase TiO2 and monoclinic WO3. Based on UV-VIS DRS and Kubelka-Munk function the fibers could absorb visible light. Moreover, 100% TiBALDH had an indirect band gap of 2.9 eV, and the band gap decreased with increase in AMT, i.e., for 0% TiBALDH, band gap was 2.4 eV. The fibers degraded methylene blue dye in visible light, and 90% TiBALDH had the highest photocatalytic activity, i.e., it degraded 40% of the dye after 240 min.

11.
RSC Adv ; 11(6): 3713-3724, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-35424281

ABSTRACT

Two polymorphs and a solvatomorph of a new dimethylammonium polytungstate-decakis(dimethylammonium) dihydrogendodecatungstate, (Me2NH2)10(W12O42)·nH2O (n = 10 or 11)-have been synthesized. Their structures were characterized by single-crystal X-ray diffraction and solid-phase NMR methods. The shape of the dodecatungstate anions is essentially the same in all three structures, their interaction with the cations and water of crystallization, however, is remarkably variable, because the latter forms different hydrogen-bonded networks, and provides a highly versatile matrix. Accordingly, the N-H⋯O and C-H⋯O hydrogen bonds are positioned in each crystal lattice in a variety of environments, characteristic to the structure, which can be distinguished by solid-state 1H-CRAMPS, 13C, 15N CP MAS and 1H-13C heteronuclear correlation NMR. Thermogravimetry of the solvatomorphs also reflect the difference and multiformity of the environment of the water molecules in the different crystal lattices. The major factors behind the variability of the matrix are the ability of ammonium cations to form two hydrogen bonds and the rigidity of the polyoxometalate anion cage. The positions of the oxygen atoms in the latter are favourable for the formation of bifurcated and trifurcated cation-anion hydrogen bonds, some which are so durable that they persist after the crystals are dissolved in water, forming ion associates even in dilute solutions. The H atom involved in furcated hydrogen bonds cannot be exchanged by deuterium when the compound is dissolved in D2O. An obvious consequence of the versatility of the matrix is the propensity of these compounds to form multiple polymorphs.

12.
Nanomaterials (Basel) ; 10(11)2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33266500

ABSTRACT

When graphene oxide is reduced, the functional groups are released and the structure becomes more ordered. The degree of reduction might be tunable with the process parameters. In our work, graphene oxide is prepared and the effect of thermal and chemical reduction is investigated. The samples are characterized with TG/DTA-MS, SEM-EDX, TEM, XPS, ATR-FTIR, Raman spectroscopy and XRD. Their electrical resistance, cyclic voltammetry and photocatalytic activity data are investigated. The conductivity can be varied by several orders of magnitude, offering a tool to match its electrical properties to certain applications. Low temperature reduction in air offers a material with the highest capacitance, which might be used in supercapacitors. The bare graphene oxide has considerably larger photocatalytic activity than P25 TiO2. Reduction decreases the activity, meaning that reduced graphene oxide can be used as an electron sink in composite photocatalysts, but does not contribute to the photocatalytic activity by itself.

13.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937934

ABSTRACT

Nanofluids obtained from halloysite and de-ionized water (DI) were prepared by using surfactants and changing pH for heat-transfer applications. The halloysite nanotubes (HNTs) nanofluids were studied for several volume fractions (0.5, 1.0, and 1.5 vol%) and temperatures (20, 30, 40, 50, and 60 °C). The properties of HNTs were studied with a scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDX), Fourier-transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), Raman spectroscopy and thermogravimetry/differential thermal analysis (TG/DTA). The stability of the nanofluids was proven by zeta potentials measurements and visual observation. With surfactants, the HNT nanofluids had the highest thermal conductivity increment of 18.30% for 1.5 vol% concentration in comparison with the base fluid. The thermal conductivity enhancement of nanofluids containing surfactant was slightly higher than nanofluids with pH = 12. The prepared nanofluids were Newtonian. The viscosity enhancements of the nanofluid were 11% and 12.8% at 30 °C for 0.5% volume concentration with surfactants and at pH = 12, respectively. Empirical correlations of viscosity and thermal conductivity for these nanofluids were proposed for practical applications.

14.
Nanomaterials (Basel) ; 10(5)2020 May 07.
Article in English | MEDLINE | ID: mdl-32392711

ABSTRACT

Effects of different reaction parameters in the hydrothermal synthesis of molybdenum oxides (MoO3) were investigated and monoclinic (ß-) MoO3 was prepared hydrothermally for the first time. Various temperatures (90/210 °C, and as a novelty 240 °C) and durations (3/6 h) were used. At 240 °C, cetyltrimethylammonium bromide (CTAB) and CrCl3 additives were also tested. Both the reaction temperatures and durations played a significant role in the formation of the products. At 90 °C, h-MoO3 was obtained, while at 240 °C the orthorhombic (α-) MoO3 formed with hexagonal rod-like and nanofibrous morphology, respectively. The phase transformation between these two phases was observed at 210 °C. At this temperature, the 3 h reaction time resulted in the mixture of h- and α-MoO3, but 6 h led to pure α-MoO3. With CTAB the product was bare o-MoO3, however, when CrCl3 was applied, pure metastable m-MoO3 formed with the well-crystallized nanosheet morphology. The gas sensing of the MoO3 polymorphs was tested to H2, which was the first such gas sensing study in the case of m-WO3. Monoclinic MoO3 was found to be more sensitive in H2 sensing than o-MoO3. This initial gas sensing study indicates that m-MoO3 has promising gas sensing properties and this MoO3 polymorph is promising to be studied in detail in the future.

15.
Nanomaterials (Basel) ; 10(5)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370296

ABSTRACT

TiO2/WO3 nanofibers were prepared in a one-step process by electrospinning. Titanium(IV) bis(ammonium lactato)dihydroxide (TiBALDH) and ammonium metatungstate (AMT) were used as water-soluble Ti and W precursors, respectively. Polyvinylpyrrolidone (PVP) and varying ratios of TiBALDH and AMT were dissolved in a mixture of H2O, EtOH and CH3COOH. The as-spun fibers were then heated in air at 1 °C min-1 until 600 °C to form TiO2/WO3 composite nanofibers. Fiber characterization was done using TG/DTA, SEM-EDX, FTIR, XRD, and Raman. The annealed composite nanofibers had a diameter range of 130-1940 nm, and the results showed a growth in the fiber diameter with an increasing amount of WO3. The photocatalytic property of the fibers was also checked for methyl orange bleaching in visible and UV light. In visible light, the photocatalytic activity increased with an increase in the ratio of AMT, while 50% TiBALDH composite fibers showed the highest activity among the as-prepared fibers in UV light.

16.
Nanomaterials (Basel) ; 10(2)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023933

ABSTRACT

TiO2 and ZnO single and multilayers were deposited on hydroxyl functionalized multi-walled carbon nanotubes using atomic layer deposition. The bare carbon nanotubes and the resulting heterostructures were characterized by TG/DTA, Raman, XRD, SEM-EDX, XPS, TEM-EELS-SAED and low temperature nitrogen adsorption techniques, and their photocatalytic and gas sensing activities were also studied. The carbon nanotubes (CNTs) were uniformly covered with anatase TiO2 and wurtzite ZnO layers and with their combinations. In the photocatalytic degradation of methyl orange, the most beneficial structures are those where ZnO is the external layer, both in the case of single and double oxide layer covered CNTs (CNT-ZnO and CNT-TiO2-ZnO). The samples with multilayer oxides (CNT-ZnO-TiO2 and CNT-TiO2-ZnO) have lower catalytic activity due to their larger average densities, and consequently lower surface areas, compared to single oxide layer coated CNTs (CNT-ZnO and CNT-TiO2). In contrast, in gas sensing it is advantageous to have TiO2 as the outer layer. Since ZnO has higher conductivity, its gas sensing signals are lower when reacting with NH3 gas. The double oxide layer samples have higher resistivity, and hence a larger gas sensing response than their single oxide layer counterparts.

17.
Materials (Basel) ; 12(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31395835

ABSTRACT

Titanium dioxide-carbon sphere (TiO2-CS) composites were constructed via using prefabricated carbon spheres as templates. By the removal of template from the TiO2-CS, TiO2 hollow structures (HS) were synthesized. The CS templates were prepared by the hydrothermal treatment of ordinary table sugar (sucrose). TiO2-HSs were obtained by removing CSs with calcination. Our own sensitized TiO2 was used for coating the CSs. The structure of the CSs, TiO2-CS composites, and TiO2-HSs were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectroscopy (DRS). The effect of various synthesis parameters (purification method of CSs, precursor quantity, and applied furnace) on the morphology was investigated. The photocatalytic activity was investigated by phenol model pollutant degradation under visible light irradiation (λ > 400 nm). It was established that the composite samples possess lower crystallinity and photocatalytic activity compared to TiO2 hollow structures. Based on XPS measurements, the carbon content on the surface of the TiO2-HS exerts an adverse effect on the photocatalytic performance. The synthesis parameters were optimized and the TiO2-HS specimen having the best absolute and surface normalized photocatalytic efficiency was identified. The superior properties were explained in terms of its unique morphology and surface properties. The stability of this TiO2-HS was investigated via XRD and SEM measurements after three consecutive phenol degradation tests, and it was found to be highly stable as it entirely retained its crystal phase composition, morphology and photocatalytic activity.

18.
Materials (Basel) ; 12(7)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30987035

ABSTRACT

Vertically aligned carbon nanotubes (VACNTs or "CNT forest") were decorated with semiconductor particles (TiO2 and ZnO) by atomic layer deposition (ALD). Both the structure and morphology of the components were systematically studied using scanning (SEM) and high resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and X-ray diffraction (XRD) methods. Characterization results revealed that the decoration was successful in the whole bulk of VACNTs. The effect of a follow-up heat treatment was also investigated and its effect on the structure was proved. It was attested that atomic layer deposition is a suitable technique for the fabrication of semiconductor/vertically aligned carbon nanotubes composites. Regarding their technological importance, we hope that semiconductor/CNT forest nanocomposites find potential application in the near future.

19.
RSC Adv ; 9(49): 28387-28398, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-35529631

ABSTRACT

Compounds containing redox active permanganate anions and complexed silver cations with reducing pyridine ligands are used not only as selective and mild oxidants in organic chemistry but as precursors for nanocatalyst synthesis in low-temperature solid-phase quasi-intramolecular redox reactions. Here we show a novel compound (4Agpy2MnO4·Agpy4MnO4) that has unique structural features including (1) four coordinated and one non-coordinated permanganate anion, (2) κ1O-permanganate coordinated Ag, (3) chain-like [Ag(py)2]+ units, (4) non-coordinated ionic permanganate ions and an [Ag(py)4]+ tetrahedra as well as (5) unsymmetrical hydrogen bonds between pyridine α-CHs and a permanganate oxygen. As a result of the oxidizing permanganate anion and reducing pyridine ligand, a highly exothermic reaction occurs at 85 °C. If the decomposition heat is absorbed by alumina or oxidation-resistant organic solvents (the solvent absorbs the heat to evaporate), the decomposition reaction proceeds smoothly and safely. During heating of the solid material, pyridine is partly oxidized into carbon dioxide and water; the solid phase decomposition end product contains mainly metallic Ag, Mn3O4 and some encapsulated carbon dioxide. Surprisingly, the enigmatic carbon-dioxide is an intercalated gas instead of the expected chemisorbed carbonate form. The title compound is proved to be a mild and efficient oxidant toward benzyl alcohols with an almost quantitative yield of benzaldehydes.

20.
Sci Rep ; 7(1): 4337, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28659578

ABSTRACT

Carbon nanospheres (CNSs) were prepared by hydrothermal synthesis, and coated with TiO2 and ZnO nanofilms by atomic layer deposition. Subsequently, through burning out the carbon core templates hollow metal oxide nanospheres were obtained. The substrates, the carbon-metal oxide composites and the hollow nanospheres were characterized with TG/DTA-MS, FTIR, Raman, XRD, SEM-EDX, TEM-SAED and their photocatalytic activity was also investigated. The results indicate that CNSs are not beneficial for photocatalysis, but the crystalline hollow metal oxide nanospheres have considerable photocatalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...