Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 18: 1376577, 2024.
Article in English | MEDLINE | ID: mdl-38686017

ABSTRACT

Excess oxygen (O2) levels may have a stimulating effect, but in the long term, and at high concentrations of O2, it is harmful to the nervous system. The hippocampus is very sensitive to pathophysiological changes and altered O2 concentrations can interfere with hippocampus-dependent learning and memory functions. In this study, we investigated the hyperoxia-induced changes in the rat hippocampus to evaluate the short-term effect of mild and severe hyperoxia. Wistar male rats were randomly divided into control (21% O2), mild hyperoxia (30% O2), and severe hyperoxia groups (100% O2). The O2 exposure lasted for 60 min. Multi-channel silicon probes were used to study network oscillations and firing properties of hippocampal putative inhibitory and excitatory neurons. Neural damage was assessed using the Gallyas silver impregnation method. Mild hyperoxia (30% O2) led to the formation of moderate numbers of silver-impregnated "dark" neurons in the hippocampus. On the other hand, exposure to 100% O2 was associated with a significant increase in the number of "dark" neurons located mostly in the hilus. The peak frequency of the delta oscillation decreased significantly in both mild and severe hyperoxia in urethane anesthetized rats. Compared to normoxia, the firing activity of pyramidal neurons under hyperoxia increased while it was more heterogeneous in putative interneurons in the cornu ammonis area 1 (CA1) and area 3 (CA3). These results indicate that short-term hyperoxia can change the firing properties of hippocampal neurons and network oscillations and damage neurons. Therefore, the use of elevated O2 concentration inhalation in hospitals (i.e., COVID treatment and surgery) and in various non-medical scenarios (i.e., airplane emergency O2 masks, fire-fighters, and high altitude trekkers) must be used with extreme caution.

2.
Front Cell Neurosci ; 17: 1277375, 2023.
Article in English | MEDLINE | ID: mdl-37841285

ABSTRACT

Hypoxia causes structural and functional changes in several brain regions, including the oxygen-concentration-sensitive hippocampus. We investigated the consequences of mild short-term hypoxia on rat hippocampus in vivo. The hypoxic group was treated with 16% O2 for 1 h, and the control group with 21% O2. Using a combination of Gallyas silver impregnation histochemistry revealing damaged neurons and interneuron-specific immunohistochemistry, we found that somatostatin-expressing inhibitory neurons in the hilus were injured. We used 32-channel silicon probe arrays to record network oscillations and unit activity from the hippocampal layers under anaesthesia. There were no changes in the frequency power of slow, theta, beta, or gamma bands, but we found a significant increase in the frequency of slow oscillation (2.1-2.2 Hz) at 16% O2 compared to 21% O2. In the hilus region, the firing frequency of unidentified interneurons decreased. In the CA3 region, the firing frequency of some unidentified interneurons decreased while the activity of other interneurons increased. The activity of pyramidal cells increased both in the CA1 and CA3 regions. In addition, the regularity of CA1, CA3 pyramidal cells' and CA3 type II and hilar interneuron activity has significantly changed in hypoxic conditions. In summary, a low O2 environment caused profound changes in the state of hippocampal excitatory and inhibitory neurons and network activity, indicating potential changes in information processing caused by mild short-term hypoxia.

3.
Antioxidants (Basel) ; 10(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34356334

ABSTRACT

Grape pomace is a valuable source of various bioactive compounds such as plant-derived polyphenols and polyunsaturated fatty acids (PUFAs). The commercial demand of grape skin and seed powders as nutraceuticals is still growing. However, no distinction is currently made between unfermented native grape seed and grape seed pomace powders regarding their antioxidant activities. Our aim was to find the relationship between the polyphenol and fatty acid content as well as the antioxidant capacity of native and fermented grape seeds of four different grape varieties harvested in the Villány wine region. According to our results, none of the three investigated polyphenols (resveratrol, rutin, quercetin) could be detected in native grape seed samples in correlation with their significantly lower total antioxidant capacities compared to fermented seed samples. Pinot Noir (PN) grape seed pomace samples with the highest resveratrol and oil content showed significantly higher total antioxidant capacity than Cabernet Sauvignon (CS), Syrah (S) and Blue Portugal (BP) samples. Based on the statistical analysis, positive correlation was found between the fatty acid content and the resveratrol concentration in the pomace samples of different grape varieties. In contrast, rutin concentrations were negatively proportional to the fatty acid content of the fermented samples. No significant correlation was found considering the quercetin content of the samples. According to our findings, grape pomace seems a more promising source in the production of nutraceuticals, since it contains polyphenols in higher concentration and exerts significantly higher antioxidant activity than native grape seeds.

4.
PLoS Comput Biol ; 16(12): e1007974, 2020 12.
Article in English | MEDLINE | ID: mdl-33347479

ABSTRACT

Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.


Subject(s)
Caenorhabditis elegans/physiology , Connectome , Gene Expression , Neurons/physiology , Synapses/physiology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Neurons/metabolism , Synapses/metabolism
5.
PLoS One ; 15(4): e0230249, 2020.
Article in English | MEDLINE | ID: mdl-32272486

ABSTRACT

BACKGROUND: In the cuprizone model of multiple sclerosis, de- and remyelination can be studied without major interference from the adaptive immune responses. Since previous proteomic studies did not focus on the corpus callosum, where cuprizone causes the most pronounced demyelination, we performed a bottom up proteomic analysis on this brain region. METHODS: Eight week-old mice treated with 0.2% cuprizone, for 4 weeks and controls (C) were sacrificed after termination of the treatment (4wD), and 2 (2dR) or 14 (2wR) days later. Homogenates of dissected corpus callosum were analysed by quantitative proteomics. For data processing, clustering, gene ontology analysis, and regulatory network prediction, we used Perseus, PANTHER and Ingenuity Pathway Analysis softwares, respectively. RESULTS: We identified 4886 unmodified, single- or multi phosphorylated and/or gycosylated (PTM) proteins. Out of them, 191 proteins were differentially regulated in at least one experimental group. We found 57 proteins specific for demyelination, 27 for early- and 57 for late remyelinationwhile 36 proteins were affected in two, and 23 proteins in all three groups. Phosphorylation represented 92% of the post translational modifications among differentially regulated modified (PTM) proteins with decreased level, while it was only 30% of the PTM proteins with increased level. Gene ontology analysis could not classify the demyelination specific proteins into any biological process category, while allocated the remyelination specific ones to nervous system development and myelination as the most specific subcategory. We also identified a protein network in experimental remyelination, and the gene orthologues of the network were differentially expressed in remyelinating multiple sclerosis brain lesions consistent with an early remyelination pattern. CONCLUSION: Proteomic analysis seems more informative for remyelination than demyelination in the cuprizone model.


Subject(s)
Corpus Callosum/metabolism , Demyelinating Diseases/metabolism , Proteomics , Remyelination , Animals , Cluster Analysis , Gene Ontology , Glycosylation , Male , Mice, Inbred C57BL , Phosphorylation , Protein Interaction Maps , Protein Processing, Post-Translational
6.
Front Immunol ; 9: 490, 2018.
Article in English | MEDLINE | ID: mdl-29593734

ABSTRACT

Background: The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs) during remyelination, but its role has not been examined during demyelination. Methods: MicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray) and proteome (liquid chromatography tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis. Results: miR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP+ oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2+ OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3+ and Iba1+ macrophages/microglia was reduced in the demyelinating corpus callosum of the KO mice. Conclusion: During demyelination, absence of miR-146a reduced inflammatory responses, demyelination, axonal loss, the number of infiltrating macrophages, and increased the number of myelinating oligodendrocytes. The number of OPCs was slightly higher in the WT mice during remyelination, indicating a complex role of miR-146a during in vivo de- and remyelination.


Subject(s)
Axons/pathology , Corpus Callosum/physiology , Demyelinating Diseases/genetics , MicroRNAs/genetics , Oligodendroglia/physiology , Animals , Cell Differentiation , Chemokine CCL2/genetics , Cuprizone , Female , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Receptors, Tumor Necrosis Factor/genetics
7.
Acta Vet Hung ; 64(2): 201-12, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27342091

ABSTRACT

In a cultured pikeperch (Sander lucioperca) stock the monopisthocotylean monogenean gill parasite Ancyrocephalus paradoxus caused heavy infection and mortalities. The gills of the affected fish specimens were infected by 50 to 800 monogenean parasites. Severe pathological changes were found in areas where the worms attached to the gills. At the attachment sites the haptoral discs of the worms formed a deep depression in the epithelium of the filaments, and the anchors pierced into and fixed themselves to the connective tissue of the cartilaginous gill rays. At these attachment sites red blood cells released from injured capillaries were found among the damaged epithelial cells. Around the hooks, anchors and body sections coming into contact with the gill filaments a proliferative tissue developed in which only a remnant of the damaged lamellae was found. Due to the damage caused by the worms the tips of the heavily infected gill filaments fused, formed clubs and were composed of epitheloid-type regeneration tissue lacking respiratory lamellae. In the basal parts of the filaments, where most of the worms attached to the gill, only denuded filaments deprived of lamellae were observed among the cross-sectioned worms in histological sections.


Subject(s)
Fish Diseases/parasitology , Gills/parasitology , Perches/parasitology , Platyhelminths , Trematode Infections/veterinary , Animals , Aquaculture , Fish Diseases/mortality , Fish Diseases/pathology , Gills/pathology , Trematode Infections/mortality , Trematode Infections/parasitology , Trematode Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...