Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 27(7): 3842-8, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21401060

ABSTRACT

In this study we investigated the chemical and surface wettability changes of poly(dimethylsiloxane) (PDMS) induced by a 2.0 MeV He(+) beam irradiation. The chemical changes created in PDMS were characterized by universal attenuated total reflectance infrared (UATR-FTIR) spectroscopy, while the changes of the wettability were determined by contact angle measurements. In a separate analysis, hydrogen depletion was also investigated with a 1.6 MeV He(+) beam by applying the elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry techniques simultaneously. The ERDA results showed that the hydrogen content of PDMS decreased irreversibly, which means that volatile products were formed under radiolysis, such as hydrogen or methane. The results were completed with UATR-FTIR measurements. We propose a complete reaction mechanism for the processes taking place in PDMS. These ion beam induced processes, such as chain scissions, cross-linking, and depletion of small molecular weight fragments, lead to the formation of a silica-like final product (SiO(x)). The significant chemical changes at the surface influence the wettability of PDMS, making it considerably more hydrophilic. The penetration depth of the 2.0 MeV He(+) ions is significantly higher compared to that of other surface modification techniques, which makes the modified layer thick and homogeneous; on the other hand, it is easily controllable by the energy of the incident ions.

2.
Nanotechnology ; 21(29): 295704, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20601754

ABSTRACT

In this paper a study on the ion transmission ratio of a nanoporous alumina sample is presented. The sample was investigated by scanning transmission ion microscopy (STIM) with different beam sizes. The hexagonally close-packed Al(2)O(3) nanocapillary array, realized as a suspended membrane of 15 microm thickness, had pore diameters of approximately 215 nm and spacing of approximately 450 nm. When the proton beam size was limited to a single domain, a peak transmission ratio of 19% was observed as is expected from the geometry (approximately 19-20%). This result points out an almost perfectly parallel alignment of the capillaries within one domain. However, for larger beam scanning areas (sampling multiple domains) the transmission ratio was reduced to 5%. The STIM analysis over an area larger than the typical domain size revealed an overall capillary angular spread of approximately 2 degrees.

SELECTION OF CITATIONS
SEARCH DETAIL
...