Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 385(Pt 2): 575-80, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15352872

ABSTRACT

Bacterial luciferases (LuxAB) can be readily classed as slow or fast decay luciferases based on their rates of luminescence decay in a single turnover assay. Luciferases from Vibrio harveyi and Xenorhabdus (Photorhabdus) luminescens have slow decay rates, and those from the Photobacterium genus, such as Photobacterium fisheri, P. phosphoreum and P. leiognathi, have rapid decay rates. By substitution of a 67-amino-acid stretch of P. phosphoreum LuxA in the central region of the LuxA subunit, the 'slow' X. luminescens luciferase was converted into a chimaeric luciferase with a significantly more rapid decay rate [Valkova, Szittner and Meighen (1999) Biochemistry 38, 13820-13828]. To understand better the role of specific residues in the classification of luciferases as slow and fast decay, we have conducted random mutagenesis on this region. One of the mutants generated by a single mutation on LuxA at position 175 [E175G (Glu175-->Gly)] resulted in the 'slow decay' X. luminescens luciferase being converted into a luciferase with a significantly more rapid decay rate. These results indicate the importance of Glu175 in LuxA as a critical residue for differentiating between 'slow' and 'fast' luciferases and show that this distinction is primarily due to differences in aldehyde affinity and in the decomposition of the luciferase-flavin-oxygen intermediate.


Subject(s)
Glutamic Acid/physiology , Luciferases, Bacterial/genetics , Luminescence , Mutagenesis/genetics , Aldehydes/chemistry , Aldehydes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular/methods , Flavin Mononucleotide/metabolism , Flavins/chemistry , Flavins/metabolism , Glutamic Acid/chemistry , Luciferases, Bacterial/chemistry , Luciferases, Bacterial/metabolism , Luminescent Measurements , Luminescent Proteins/physiology , Models, Chemical , Mutagenesis/physiology , Photobacterium/enzymology , Photorhabdus/enzymology , Research Design , Substrate Specificity/physiology , Vibrio/enzymology
2.
Biochemistry ; 43(11): 3183-94, 2004 Mar 23.
Article in English | MEDLINE | ID: mdl-15023068

ABSTRACT

The recently proposed model for the bacteria luciferase-flavin mononucleotide complex identifies a number of critical intermolecular interactions that define a binding platform for the isoalloxazine ring of flavin [Lin, L. Y., Sulea, T., Szittner, R., Vassilyev, V., Purisima, E. O., and Meighen, E. A. (2001) Protein Sci. 10, 1563-1571]. A key interaction involving van der Waals contact between the isopropyl side chain of alphaVal173 and the 7,8-dimethyl benzene plane of the isoalloxazine chromophore represents an important target to test the validity of the proposed model. Here, structure-function analysis of luciferase variants carrying single point mutations at position alpha173 have verified the functional layout of the active site architecture and implicated this site directly in flavin binding. Moreover, a decrease in the stability of the enzyme-bound C4a-hydroperoxyflavin intermediate in the mutants could account for changes in saturation with the fatty aldehyde substrate. A predicted red-shift on mutation of position alpha173 to increase its polarity confirmed that alphaVal173 was an integral component of the chromophore-binding microenvironment. Introduction of mutations in residues that contact the pyrimidine plane of the isoalloxazine chromophore (alphaA75G/C106V) into the alphaV173A, alphaV173C, alphaV173T, and alphaV173S mutants led to the retention of high levels of enzyme activity (10-40% of wild type) and further red-shifted the emission spectra in the triple mutants. The additivity of the mutation-induced red-shifts in the emission wavelength spectrum provides the basis toward engineering luciferase variants that emit different light colors with the proposed flavin-luciferase model complex as a design reference.


Subject(s)
Bacterial Proteins/chemistry , Flavin Mononucleotide/chemistry , Luciferases/chemistry , Luminescent Measurements , Mutagenesis, Site-Directed , Vibrio/enzymology , Bacterial Proteins/genetics , Binding Sites/genetics , Catalysis , Enzyme Stability/genetics , Flavins/chemistry , Kinetics , Luciferases/genetics , Models, Chemical , Models, Molecular , Protein Binding/genetics , Spectrophotometry , Structure-Activity Relationship , Valine/genetics , Vibrio/genetics
3.
Biochem Biophys Res Commun ; 309(1): 66-70, 2003 Sep 12.
Article in English | MEDLINE | ID: mdl-12943664

ABSTRACT

Bright luminescent yeast cells with light intensities similar to bacteria containing luciferase (LuxAB) were generated by providing saturating nontoxic levels of the substrates for the bioluminescence reaction (FMNH(2)+O(2) and fatty aldehyde-->light). Z-9-Tetradecenal added to yeast (+luxAB) gave a luminescent signal close to that with decanal with the signal remaining strong for >24h while luminescence of yeast with decanal decayed to less than 0.01% of that with Z-9-tetradecenal after 2min. Moreover, yeast survived in 0.5% (v/v) Z-9-tetradecenal while 0.005% (v/v) decanal was lethal. Luminescence of yeast (+luxAB) was also stimulated 100-fold by transformation with the NADPH-specific FMN reductase (FRP) from Vibrio harveyi. The recognition of the nontoxicity and high luminescence generated by Z-9-tetradecenal and the generation of high levels of FMNH(2) in yeast by transformation with a flavin reductase provide evidence for the strong potential use of bacterial luciferase as the light-emitting sensor of choice in eukaryotic organisms.


Subject(s)
Luciferases/chemistry , Luminescent Measurements , Aldehydes/pharmacology , Cell Division , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Flavins/metabolism , Light , Luciferases/metabolism , Oxidoreductases/metabolism , Plasmids/metabolism , Polymerase Chain Reaction , Saccharomyces cerevisiae/metabolism , Time Factors
4.
Biochemistry ; 41(31): 9938-45, 2002 Aug 06.
Article in English | MEDLINE | ID: mdl-12146958

ABSTRACT

The role of a highly reactive cysteine residue, Cys106, in Vibrio harveyi luciferase in modulating the substrate-enzyme interactions and in turn affecting the enzyme activity has been extensively investigated over the past three decades. Replacing Cys106 with valine dramatically hinders the ability of luciferase to stabilize the C4a-hydroperoxyflavin intermediate [Abu-Soud, H. M., Clark, A. C., Francisco, W. A., Baldwin, T. O., and Raushel, F. M. (1993) J. Biol. Chem. 268, 7699-7706] and consume aldehyde substrate [Xi, L., Cho, K.-W., Herndon, M. E., and Tu, S.-C. (1990) J. Biol. Chem. 265, 4200-4203], therefore markedly decreasing enzyme activity. On the basis of the structure-activity relationship of flavin analogues and the location of the phosphate binding site of flavin mononucleotide (FMN) coupled with molecular modeling, the functional part of the isoalloxazine ring of FMN, the thiol side chain of Cys106, the methyl group of Ala75, and the unique non-prolyl cis-peptide bond between Ala74 and Ala75 were found to be closely packed [Lin, L. Y., Sulea, T., Szittner, R., Vassilyev, V., Purisima, E. O., and Meighen, E. A. (2001) Protein Sci. 10, 1563-1571]. Here, by mutating Ala75 to Gly, we restored key wild-type properties to the C106V mutant, in particular, high enzyme activity and a stable C4a-hydroperoxyflavin intermediate, demonstrating that the primary reason for the dark phenotype of the C106V mutant was the unfavorable steric interaction between Val106 and Ala75 side chains, which could in turn disturb the cis-oriented amide linkage of Ala74 and Ala75. Moreover, significant red shifts in light emission of 3-10 nm were measured for luciferases carrying Val106 with the spectrum of the double mutant C106V/A75G now red shifted to that of Photobacterium phosphoreum luciferase, which also has Val and Gly at positions 106 and 75, respectively. These results strengthen the validity of the binding geometry of the modeled flavin with the re-face of the pyrimidine end of the isoalloxazine ring next to Cys106 and implicate the Ala74-Ala75 cis-peptide as a key component in the bioluminescence reaction.


Subject(s)
Luciferases/metabolism , Sulfhydryl Compounds/metabolism , Vibrio/enzymology , Enzyme Stability , Luciferases/chemistry , Luciferases/genetics , Luminescent Measurements , Models, Molecular , Mutagenesis, Site-Directed , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...