Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(8)2021 07 27.
Article in English | MEDLINE | ID: mdl-34440677

ABSTRACT

Adipose tissue (AT) represents a commonly used source of mesenchymal stem/stromal cells (MSCs) whose proregenerative potential has been widely investigated in multiple clinical trials worldwide. However, the standardization of the manufacturing process of MSC-based cell therapy medicinal products in compliance with the requirements of the local authorities is obligatory and will allow us to obtain the necessary permits for product administration according to its intended use. Within the research phase (RD), we optimized the protocols used for the processing and ex vivo expansion of AT-derived MSCs (AT-MSCs) for the development of an Advanced Therapy Medicinal Product (ATMP) for use in humans. Critical process parameters (including, e.g., the concentration of enzyme used for AT digestion, cell culture conditions) were identified and examined to ensure the high quality of the final product containing AT-MSCs. We confirmed the identity of isolated AT-MSCs as MSCs and their trilineage differentiation potential according to the International Society for Cellular Therapy (ISCT) recommendations. Based on the conducted experiments, in-process quality control (QC) parameters and acceptance criteria were defined for the manufacturing of hospital exemption ATMP (HE-ATMP). Finally, we conducted a validation of the manufacturing process in a GMP facility. In the current study, we presented a process approach leading to the optimization of processing and the ex vivo expansion of AT-MSCs for the development of ATMP for use in humans.


Subject(s)
Adipose Tissue/cytology , Cell Proliferation , Cell Separation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Regenerative Medicine , Adult , Cell Culture Techniques , Cell Differentiation , Cell Lineage , Cells, Cultured , Chondrogenesis , Female , Humans , Kinetics , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , Phenotype
2.
Mater Sci Eng C Mater Biol Appl ; 119: 111614, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33321657

ABSTRACT

Cell-based therapies have recently emerged as promising strategies for the treatment of cardiovascular disease. Mesenchymal stem cells (MSCs) are a promising cell type that represent a class of adult stem cells characterized by multipotency, high proliferative capacity, paracrine activity, and low immunogenicity. To improve the functional and therapeutic efficacy of MSCs, novel biomaterials are considered as scaffolds/surfaces that promote MSCs growth and differentiation. One of them are graphene-based materials, including graphene oxide (GO) and reduced graphene oxide (rGO). Due to the unique physical, chemical, and biological properties of graphene, scaffolds comprising GO/rGO have been examined as novel platforms to improve the differentiation potential of human MSCs in vitro. We verified different i) size of GO flakes, ii) reduction level, and iii) layer thickness to select the most suitable artificial niche for MSCs culture. The results revealed that graphene-based substrates constitute non-toxic substrates for MSCs. Surfaces with large flakes of GO as well as low reduced rGO are the most biocompatible for MSCs propagation and do not affect their proliferation and survival. Interestingly, small GO flakes and highly reduced rGO decreased MSCs proliferation and induced their apoptosis. We also found that GO and rGO substrates did not alter the MSCs phenotype, cell cycle progression and might modulate the adhesive capabilities of these cells. Importantly, we demonstrated that both materials promoted the cardiomyogenic and angiogenic differentiation capacity of MSCs in vitro. Thus, our data indicates that graphene-based surfaces represent promising materials that may influence the therapeutic application of MSCs via supporting their pro-regenerative potential.


Subject(s)
Graphite , Mesenchymal Stem Cells , Adult , Biocompatible Materials/pharmacology , Cell Differentiation , Heart , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...