Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 44(42): 18447-58, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26441208

ABSTRACT

Dipyrazolium iodide triiodide, [C3N2H5(+)]2[I(-)·I3(-)], has been synthesized and studied by means of X-ray diffraction, differential scanning calorimetry, dielectric measurements, and UV-Vis spectroscopy. Two reversible, solid-solid phase transitions (Imma (I) ↔ (II) ↔Pbam (III)) at 254 K and 182/188 K respectively have been revealed. The anionic network experiences spectacular changes associated with a huge rebuilding of the inorganic network from [I(-)·I3(-)] to [I4(2-)]. The low frequency dielectric relaxation process occurs in phase II with the activation energy of ca. 34 kJ mol(-1). The molecular motion of the pyrazolium cations in [C3N2H5(+)]2[I(-)·I3(-)] has been studied by means of proton magnetic resonance studies ((1)H NMR). The ferroelastic properties of all phases have been confirmed by polarizing microscopy observations. The molecular mechanism of the phase transitions in the compound is proposed.

2.
J Magn Reson ; 231: 54-60, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23584536

ABSTRACT

Proton spin-lattice relaxation times T1 at 24.7 MHz and 15 MHz and second moment of NMR line have been applied to study molecular dynamics of a novel ferroelectric (NH4)2H2P2O6 (T(c)=178 K) in the temperature range 10-290 K. Low-temperature T1 behaviour below Tc is interpreted in terms of Haupt's theory and Schrödinger correlation time of tunnelling jumps. A shallow T1 minimum observed around 39 K is attributed to the C3 classical motion of "intra" proton-proton vectors of NH3 (ammonium groups NH4(+) may perform stochastic jumps about any of the four C3 symmetry axes). The tunnelling splitting of the ground state vibrational level, (νT)v0, of the same frequency for both ammonium groups was estimated as high as 900 MHz ((hωT)v0=3.7 µeV). This tunnelling splitting exists only in the ferroelectric phase. Magnetisation recovery is found to be non-exponential in the temperature regime 63-48 K. The temperature of 63 K is the discovered T(tun) above which the probability of stochastic tunnelling jumps equals zero. The T1 relaxation time is temperature independent below 25 K, which is related to a constant value of the correlation time characterising tunnelling jumps according to Schrödinger. The T1 minima observed in the paraelectric phase (204 K at 15 MHz and 213 K at 24.7 MHz) as well as second moment reduction at about 130K are attributed to isotropic motion of all protons.


Subject(s)
Algorithms , Magnetic Resonance Spectroscopy/methods , Phosphates/analysis , Phosphates/chemistry , Protons , Cold Temperature , Hot Temperature , Magnetic Fields
SELECTION OF CITATIONS
SEARCH DETAIL
...