Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Neuropsychopharmacology ; 49(7): 1171-1182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521861

ABSTRACT

The majority of lifetime smokers begin using nicotine during adolescence, a critical period of brain development wherein neural circuits critical for mood, affect and cognition are vulnerable to drug-related insults. Specifically, brain regions such as the medial prefrontal cortex (mPFC), the ventral tegmental area (VTA), nucleus accumbens (NAc) and hippocampus, are implicated in both nicotine dependence and pathological phenotypes linked to mood and anxiety disorders. Clinical studies report that females experience higher rates of mood/anxiety disorders and are more resistant to smoking cessation therapies, suggesting potential sex-specific responses to nicotine exposure and later-life neuropsychiatric risk. However, the potential neural and molecular mechanisms underlying such sex differences are not clear. In the present study, we compared the impacts of adolescent nicotine exposure in male vs. female rat cohorts. We performed a combination of behavioral, electrophysiological and targeted protein expression analyses along with matrix assisted laser deionization imaging (MALDI) immediately post-adolescent exposure and later in early adulthood. We report that adolescent nicotine exposure induced long-lasting anxiety/depressive-like behaviors, disrupted neuronal activity patterns in the mPFC-VTA network and molecular alterations in various neural regions linked to affect, anxiety and cognition. Remarkably, these phenotypes were only observed in males and/or were expressed in the opposite direction in females. These findings identify a series of novel, sex-selective biomarkers for adolescent nicotine-induced neuropsychiatric risk, persisting into adulthood.


Subject(s)
Anxiety , Nicotine , Sex Characteristics , Animals , Male , Female , Nicotine/toxicity , Nicotine/adverse effects , Anxiety/chemically induced , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Phenotype , Neurons/drug effects , Neurons/metabolism , Rats, Sprague-Dawley , Nicotinic Agonists/toxicity
2.
Mol Psychiatry ; 28(10): 4234-4250, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37525013

ABSTRACT

With increasing maternal cannabis use, there is a need to investigate the lasting impact of prenatal exposure to Δ9-tetrahydrocannabinol (THC), the main psychotropic compound in cannabis, on cognitive/memory function. The endocannabinoid system (ECS), which relies on polyunsaturated fatty acids (PUFAs) to function, plays a crucial role in regulating prefrontal cortical (PFC) and hippocampal network-dependent behaviors essential for cognition and memory. Using a rodent model of prenatal cannabis exposure (PCE), we report that male and female offspring display long-term deficits in various cognitive domains. However, these phenotypes were associated with highly divergent, sex-dependent mechanisms. Electrophysiological recordings revealed hyperactive PFC pyramidal neuron activity in both males and females, but hypoactivity in the ventral hippocampus (vHIPP) in males, and hyperactivity in females. Further, cortical oscillatory activity states of theta, alpha, delta, beta, and gamma bandwidths were strongly sex divergent. Moreover, protein expression analyses at postnatal day (PD)21 and PD120 revealed primarily PD120 disturbances in dopamine D1R/D2 receptors, NMDA receptor 2B, synaptophysin, gephyrin, GAD67, and PPARα selectively in the PFC and vHIPP, in both regions in males, but only the vHIPP in females. Lastly, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS), we identified region-, age-, and sex-specific deficiencies in specific neural PUFAs, namely docosahexaenoic acid (DHA) and arachidonic acid (ARA), and related metabolites, in the PFC and hippocampus (ventral/dorsal subiculum, and CA1 regions). This study highlights several novel, long-term and sex-specific consequences of PCE on PFC-hippocampal circuit dysfunction and the potential role of specific PUFA signaling abnormalities underlying these pathological outcomes.


Subject(s)
Cognitive Dysfunction , Lipidomics , Male , Female , Pregnancy , Humans , Neurons/metabolism , Prefrontal Cortex/metabolism , Hippocampus/metabolism , Cognitive Dysfunction/metabolism
3.
Cereb Cortex ; 33(6): 2470-2484, 2023 03 10.
Article in English | MEDLINE | ID: mdl-35650684

ABSTRACT

The endocannabinoid (eCB) system represents a promising neurobiological target for novel anxiolytic pharmacotherapies. Previous clinical and preclinical evidence has revealed that genetic and/or pharmacological manipulations altering eCB signaling modulate fear and anxiety behaviors. Water-insoluble eCB lipid anandamide requires chaperone proteins for its intracellular transport to degradation, a process that requires fatty acid-binding proteins (FABPs). Here, we investigated the effects of a novel FABP-5 inhibitor, SBFI-103, on fear and anxiety-related behaviors using rats. Acute intra-prelimbic cortex administration of SBFI-103 induced a dose-dependent anxiolytic response and reduced contextual fear expression. Surprisingly, both effects were reversed when a cannabinoid-2 receptor (CB2R) antagonist, AM630, was co-infused with SBFI-103. Co-infusion of the cannabinoid-1 receptor antagonist Rimonabant with SBFI-103 reversed the contextual fear response yet showed no reversal effect on anxiety. Furthermore, in vivo neuronal recordings revealed that intra-prelimbic region SBFI-103 infusion altered the activity of putative pyramidal neurons in the basolateral amygdala and ventral hippocampus, as well as oscillatory patterns within these regions in a CB2R-dependent fashion. Our findings identify a promising role for FABP5 inhibition as a potential target for anxiolytic pharmacotherapy. Furthermore, we identify a novel, CB2R-dependent FABP-5 signaling pathway in the PFC capable of strongly modulating anxiety-related behaviors and anxiety-related neuronal transmission patterns.


Subject(s)
Anti-Anxiety Agents , Anxiety , Fatty Acid-Binding Proteins , Prefrontal Cortex , Receptor, Cannabinoid, CB2 , Animals , Rats , Amygdala/drug effects , Amygdala/metabolism , Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/metabolism , Cannabinoids/metabolism , Endocannabinoids/metabolism , Fatty Acid-Binding Proteins/antagonists & inhibitors , Fatty Acid-Binding Proteins/metabolism , Fear/drug effects , Fear/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism
4.
Neuropsychopharmacology ; 48(3): 540-551, 2023 02.
Article in English | MEDLINE | ID: mdl-36402837

ABSTRACT

Chronic exposure to Δ-9-tetrahydrocannabinol (THC) during adolescence is associated with long-lasting cognitive impairments and enhanced susceptibility to anxiety and mood disorders. Previous evidence has revealed functional and anatomical dissociations between the posterior vs. anterior portions of the hippocampal formation, which are classified as the dorsal and ventral regions in rodents, respectively. Notably, the dorsal hippocampus is critical for cognitive and contextual processing, whereas the ventral region is critical for affective and emotional processing. While adolescent THC exposure can induce significant morphological disturbances and glutamatergic signaling abnormalities in the hippocampus, it is not currently understood how the dorsal vs. ventral hippocampal regions are affected by THC during neurodevelopment. In the present study, we used an integrative combination of behavioral, molecular, and neural assays in a neurodevelopmental rodent model of adolescent THC exposure. We report that adolescent THC exposure induces long-lasting memory deficits and anxiety like-behaviors concomitant with a wide range of differential molecular and neuronal abnormalities in dorsal vs. ventral hippocampal regions. In addition, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS), we show for the first time that adolescent THC exposure induces significant and enduring dysregulation of GABA and glutamate levels in dorsal vs. ventral hippocampus. Finally, adolescent THC exposure induced dissociable dysregulations of hippocampal glutamatergic signaling, characterized by differential glutamatergic receptor expression markers, profound alterations in pyramidal neuronal activity and associated oscillatory patterns in dorsal vs. ventral hippocampal subregions.


Subject(s)
Dronabinol , Hippocampus , Dronabinol/pharmacology , Hippocampus/metabolism , Signal Transduction , Glutamic Acid/metabolism , Pyramidal Cells
5.
Psychopharmacology (Berl) ; 239(2): 509-524, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34860284

ABSTRACT

RATIONALE: Δ9-tetrahydrocannabinol (THC) is the primary psychoactive compound in cannabis and is responsible for cannabis-related neuropsychiatric side effects, including abnormal affective processing, cognitive and sensory filtering deficits and memory impairments. A critical neural region linked to the psychotropic effects of THC is the nucleus accumbens shell (NASh), an integrative mesocorticolimbic structure that sends and receives inputs from multiple brain areas known to be dysregulated in various disorders, including schizophrenia and anxiety-related disorders. Considerable evidence demonstrates functional differences between posterior vs. anterior NASh sub-regions in the processing of affective and cognitive behaviours influenced by THC. Nevertheless, the neuroanatomical regions and local molecular pathways responsible for these psychotropic effects are not currently understood. OBJECTIVES: The objectives of this study were to characterize the effects of intra-accumbens THC in the anterior vs. posterior regions of the NASh during emotional memory formation, sensorimotor gating and anxiety-related behaviours. METHODS: We performed an integrative series of translational behavioural pharmacological studies examining anxiety, sensorimotor gating and fear-related associative memory formation combined with regionally specific molecular signalling analyses in male Sprague Dawley rats. RESULTS: We report that THC in the posterior NASh causes distortions in emotional salience attribution, impaired sensory filtering and memory retention and heightened anxiety, through a glycogen-synthase-kinase-3 (GSK-3)-ß-catenin dependent signalling pathway. In contrast, THC in the anterior NASh produces anxiolytic effects via modulation of protein kinase B (Akt) phosphorylation states. CONCLUSIONS: These findings reveal critical new insights into the neuroanatomical and molecular mechanisms associated with the differential neuropsychiatric side effects of THC in dissociable nucleus accumbens sub-regions.


Subject(s)
Dronabinol , Nucleus Accumbens , Animals , Anxiety/chemically induced , Cognition , Dronabinol/pharmacology , Glycogen Synthase Kinase 3 , Male , Proto-Oncogene Proteins c-akt , Rats , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases
6.
J Neurosci ; 41(4): 739-750, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33268546

ABSTRACT

Chronic adolescent exposure to Δ-9-tetrahydrocannabinol (THC) is linked to elevated neuropsychiatric risk and induces neuronal, molecular and behavioral abnormalities resembling neuropsychiatric endophenotypes. Previous evidence has revealed that the mesocorticolimbic circuitry, including the prefrontal cortex (PFC) and mesolimbic dopamine (DA) pathway are particularly susceptible to THC-induced pathologic alterations, including dysregulation of DAergic activity states, loss of PFC GABAergic inhibitory control and affective and cognitive abnormalities. There are currently limited pharmacological intervention strategies capable of preventing THC-induced neuropathological adaptations. l-Theanine is an amino acid analog of l-glutamate and l-glutamine derived from various plant sources, including green tea leaves. l-Theanine has previously been shown to modulate levels of GABA, DA, and glutamate in various neural regions and to possess neuroprotective properties. Using a preclinical model of adolescent THC exposure in male rats, we report that l-theanine pretreatment before adolescent THC exposure is capable of preventing long-term, THC-induced dysregulation of both PFC and VTA DAergic activity states, a neuroprotective effect that persists into adulthood. In addition, pretreatment with l-theanine blocked THC-induced downregulation of local GSK-3 (glycogen synthase kinase 3) and Akt signaling pathways directly in the PFC, two biomarkers previously associated with cannabis-related psychiatric risk and subcortical DAergic dysregulation. Finally, l-theanine powerfully blocked the development of both affective and cognitive abnormalities commonly associated with adolescent THC exposure, further demonstrating functional and long-term neuroprotective effects of l-theanine in the mesocorticolimbic system.SIGNIFICANCE STATEMENT With the increasing trend of cannabis legalization and consumption during adolescence, it is essential to expand knowledge on the potential effects of adolescent cannabis exposure on brain development and identify potential pharmacological strategies to minimize Δ-9-tetrahydrocannabinol (THC)-induced neuropathology. Previous evidence demonstrates that adolescent THC exposure induces long-lasting affective and cognitive abnormalities, mesocorticolimbic dysregulation, and schizophrenia-like molecular biomarkers that persist into adulthood. We demonstrate for the first time that l-theanine, an amino acid analog of l-glutamate and l-glutamine, is capable of preventing long-term THC side effects. l-Theanine prevented the development of THC-induced behavioral aberrations, blocked cortical downregulation of local GSK-3 (glycogen synthase kinase 3) and Akt signaling pathways, and normalized dysregulation of both PFC and VTA DAergic activity, demonstrating powerful and functional neuroprotective effects against THC-induced developmental neuropathology.


Subject(s)
Cerebral Cortex/drug effects , Cognition Disorders/chemically induced , Cognition Disorders/prevention & control , Dronabinol/toxicity , Glutamates/pharmacology , Hallucinogens/toxicity , Mood Disorders/chemically induced , Mood Disorders/prevention & control , Nerve Net/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Anxiety/prevention & control , Anxiety/psychology , Cognition Disorders/psychology , Glycogen Synthase Kinase 3/drug effects , Male , Mood Disorders/psychology , Oncogene Protein v-akt/drug effects , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley , Social Behavior , Ventral Tegmental Area/drug effects
7.
Article in English | MEDLINE | ID: mdl-32623021

ABSTRACT

Clinical and pre-clinical evidence demonstrates divergent psychotropic effects of THC vs. CBD. While THC can induce perceptual distortions and anxiogenic effects, CBD displays antipsychotic and anxiolytic properties. A key brain region responsible for regulation of cognition and affect, the medial prefrontal cortex (PFC), is strongly modulated by cannabinoids, suggesting that these dissociable THC/CBD-dependent effects may involve functional and molecular interplay within the PFC. The primary aim of this study was to investigate potential interactions and molecular substrates involved in PFC-mediated effects of THC and CBD on differential cognitive and affective behavioural processing. Male Sprague Dawley rats received intra-PFC microinfusions of THC, CBD or their combination, and tested in the latent inhibition paradigm, spontaneous oddity discrimination test, elevated T-maze and open field. To identify local, drug-induced molecular modulation in the PFC, PFC samples were collected and processed with Western Blotting. Intra-PFC THC induced strong panic-like responses that were counteracted with CBD. In contrast, CBD did not affect panic-like behaviours but blocked formation of associative fear memories and impaired latent inhibition and oddity discrimination performance. Interestingly, these CBD effects were dependent upon 5-HT1A receptor transmission but not influenced by THC co-administration. Moreover, THC induced robust phosphorylation of ERK1/2 that was prevented by CBD, while CBD decreased phosphorylation of p70S6K, independently of THC. These results suggest that intra-PFC infusion of THC promotes panic-like behaviour associated with increased ERK1/2 phosphorylation. In contrast, CBD impairs perceptive functions and latent inhibition via activation of 5-HT1A receptors and reduced phosphorylation of p70S6K.


Subject(s)
Cannabidiol/administration & dosage , Dronabinol/administration & dosage , Inhibition, Psychological , Panic/drug effects , Perception/drug effects , Prefrontal Cortex/drug effects , Animals , Anticonvulsants/administration & dosage , Discrimination Learning/drug effects , Discrimination Learning/physiology , Infusions, Intraventricular , Male , Panic/physiology , Perception/physiology , Prefrontal Cortex/physiology , Psychotropic Drugs/administration & dosage , Rats , Rats, Sprague-Dawley
8.
Sci Rep ; 9(1): 9760, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31278333

ABSTRACT

The primary psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), is capable of producing bivalent rewarding and aversive affective states through interactions with the mesolimbic system. However, the precise mechanisms underlying the dissociable effects of THC are not currently understood. In the present study, we identify anatomically dissociable effects of THC within the rat nucleus accumbens (NAc), using an integrative combination of behavioral pharmacology and in vivo neuronal electrophysiology. We report that the rewarding vs. aversive stimulus properties of THC are both anatomically and pharmacologically dissociable within distinct anterior vs. posterior sub-regions of the NAc. While the rewarding effects of THC were dependent upon local µ-opioid receptor signaling, the aversive effects of THC were processed via a κ-opioid receptor substrate. Behaviorally, THC in the posterior NASh induced deficits in social reward and cognition whereas THC in the anterior NAc, potentiated opioid-related reward salience. In vivo neuronal recordings demonstrated that THC decreased medium spiny neuron (MSN) activity in the anterior NAc and increased the power of gamma (γ) oscillations. In contrast, THC increased MSN activity states in the posterior NASh and decreased γ-oscillation power. These findings reveal critical new insights into the bi-directional neuronal and pharmacological mechanisms controlling the dissociable effects of THC in mesolimbic-mediated affective processing.


Subject(s)
Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dronabinol/pharmacology , Neurons/drug effects , Neurons/metabolism , Receptors, Opioid/metabolism , Reward , Animals , Behavior, Animal , Conditioning, Classical/drug effects , Electrophysiological Phenomena , Male , Morphine/pharmacology , Motivation , Rats , Rats, Sprague-Dawley , Sucrose
9.
Neuropsychopharmacology ; 44(4): 817-825, 2019 03.
Article in English | MEDLINE | ID: mdl-30538288

ABSTRACT

The use of cannabis for therapeutic and recreational purposes is growing exponentially. Nevertheless, substantial questions remain concerning the potential cognitive and affective side-effects associated with cannabis exposure. In particular, the effects of specific marijuana-derived phytocannabinoids on neural regions such as the prefrontal cortex (PFC) are of concern, given the role of the PFC in both executive cognitive function and affective processing. The main biologically active phytocannabinoids, ∆-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), interact with multiple neurotransmitter systems important for these processes directly within the PFC. Considerable evidence has demonstrated that acute or chronic THC exposure may induce psychotomimetic effects, whereas CBD has been shown to produce potentially therapeutic effects for both psychosis and/or anxiety-related symptoms. Using an integrative combination of cognitive and affective behavioral pharmacological assays in rats, we report that acute intra-PFC infusions of THC produce anxiogenic effects while producing no impairments in executive function. In contrast, acute infusions of intra-PFC CBD impaired attentional set-shifting and spatial working memory, without interfering with anxiety or sociability behaviors. In contrast, intra-PFC CBD reversed the cognitive impairments induced by acute glutamatergic antagonism within the PFC, and blocked the anxiogenic properties of THC, suggesting that the therapeutic properties of CBD within the PFC may be present only during pathologically aberrant states within the PFC. Interestingly, the effects of PFC THC vs. CBD were found to be mediated through dissociable CB1 vs. 5-HT1A-dependent receptor signaling mechanisms, directly in the PFC.


Subject(s)
Affect/drug effects , Cannabidiol/pharmacology , Dronabinol/pharmacology , Executive Function/drug effects , Prefrontal Cortex/drug effects , Animals , Anxiety/chemically induced , Anxiety/prevention & control , Behavior, Animal/drug effects , Benzopyrans/pharmacology , Cannabidiol/antagonists & inhibitors , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Dronabinol/antagonists & inhibitors , Male , Microinjections , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats , Social Behavior
10.
Sci Rep ; 7(1): 11420, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900286

ABSTRACT

Chronic adolescent marijuana use has been linked to the later development of psychiatric diseases such as schizophrenia. GABAergic hypofunction in the prefrontal cortex (PFC) is a cardinal pathological feature of schizophrenia and may be a mechanism by which the PFC loses its ability to regulate sub-cortical dopamine (DA) resulting in schizophrenia-like neuropsychopathology. In the present study, we exposed adolescent rats to Δ-9-tetra-hydrocannabinol (THC), the psychoactive component in marijuana. At adulthood, we characterized the functionality of PFC GABAergic neurotransmission and its regulation of sub-cortical DA function using molecular, behavioral and in-vivo electrophysiological analyses. Our findings revealed a persistent attenuation of PFC GABAergic function combined with a hyperactive neuronal state in PFC neurons and associated disruptions in cortical gamma oscillatory activity. These PFC abnormalities were accompanied by hyperactive DAergic neuronal activity in the ventral tegmental area (VTA) and behavioral and cognitive abnormalities similar to those observed in psychiatric disorders. Remarkably, these neuronal and behavioral effects were reversed by pharmacological activation of GABAA receptors in the PFC. Together, these results identify a mechanistic link between dysregulated frontal cortical GABAergic inhibition and sub-cortical DAergic dysregulation, characteristic of well-established neuropsychiatric endophenotypes.


Subject(s)
Dopamine/metabolism , Dronabinol/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Psychotropic Drugs/pharmacology , gamma-Aminobutyric Acid/metabolism , Animals , Biomarkers , Brain Waves/drug effects , Cognition , Glutamate Decarboxylase/metabolism , Memory/drug effects , Neurons/drug effects , Neurons/metabolism , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Rats , Receptors, GABA-A/metabolism , Schizophrenia/etiology , Schizophrenia/metabolism , Schizophrenia/physiopathology , Schizophrenic Psychology
11.
Neuroscience ; 339: 150-161, 2016 Dec 17.
Article in English | MEDLINE | ID: mdl-27693814

ABSTRACT

A subpopulation of olivary pretectal nucleus (OPN) neurons fire action potentials in a rhythmic manner with an eruption of activity occurring approximately every two minutes. These infra-slow oscillations depend critically on functional retinal input and are subject to modulation by light. Interestingly, the activity of photoreceptors is necessary for the emergence of the rhythm and while classic photoreceptors (rods and cones) are necessary in darkness and dim light, melanopsin photoreceptors are indispensable in bright light. Using pharmacological and electrophysiological approaches in vivo, we show that also blocking retinal gap junctions (GJs), which are expressed by multitude of retinal cells, leads to the disruption of oscillatory activity in the rat OPN. Intravitreal injection of carbenoxolone (CBX) quenched oscillations in a concentration-dependent manner with 1mM being ineffective, 5mM showing partial and 20mM showing complete effectiveness in disrupting oscillations. Moreover, the most effective CBX concentration depressed cone-mediated light-induced responses of oscillatory neurons suggesting that CBX is also acting on targets other than GJs. In contrast, intravitreal injection of meclofenamic acid (MFA, 20mM) led to disruption of the rhythm but did not interfere with cone-mediated light-induced responses of oscillatory neurons, implying that MFA is more specific toward GJs than CBX, as suggested before. We conclude that electrical coupling between various types of retinal cells and resultant synchronous firing of retinal ganglion cells is necessary for the generation of infra-slow oscillations in the rat OPN.


Subject(s)
Gap Junctions/physiology , Periodicity , Pretectal Region/physiology , Retina/physiology , Animals , Carbenoxolone/pharmacology , Dose-Response Relationship, Drug , Gap Junctions/drug effects , Intravitreal Injections , Male , Meclofenamic Acid/pharmacology , Neural Pathways/drug effects , Neural Pathways/physiology , Peripheral Nervous System Agents/pharmacology , Rats , Rats, Wistar , Retina/drug effects , Vision, Ocular/drug effects , Vision, Ocular/physiology
12.
Eur J Neurosci ; 43(6): 823-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26804179

ABSTRACT

A subpopulation of olivary pretectal nucleus (OPN) neurons discharges action potentials in an oscillatory manner, with a period of approximately two minutes. This 'infra-slow' oscillatory activity depends on synaptic excitation originating in the retina. Signals from rod-cone photoreceptors reach the OPN via the axons of either classic retinal ganglion cells or intrinsically photosensitive retinal ganglion cells (ipRGCs), which use melanopsin for photon capturing. Although both cell types convey light information, their physiological functions differ considerably. The aim of the present study was to disentangle how rod-cone and melanopsin photoresponses contribute to generation of oscillatory activity. Pharmacological manipulations of specific phototransduction cascades were used whilst recording extracellular single-unit activity in the OPN of anaesthetized rats. The results show that under photopic conditions (bright light), ipRGCs play a major role in driving infra-slow oscillations, as blocking melanopsin phototransmission abolishes or transiently disturbs oscillatory firing of the OPN neurons. On the other hand, blocking rod-cone phototransmission does not change firing patterns in photopic conditions. However, under mesopic conditions (moderate light), when melanopsin phototransmission is absent, blocking rod-cone signalling causes disturbances or even the disappearance of oscillations implying that classic photoreceptors are of greater importance under moderate light. Evidence is provided that all photoreceptors are required for the generation of oscillations in the OPN, although their roles in driving the rhythm are determined by the lighting conditions, consistent with their relative sensitivities. The results further suggest that maintained retinal activity is crucial to observe infra-slow oscillatory activity in the OPN.


Subject(s)
Action Potentials , Pretectal Region/physiology , Retinal Photoreceptor Cell Inner Segment/physiology , Retinal Photoreceptor Cell Outer Segment/physiology , Animals , Male , Rats , Rats, Wistar , Vision, Ocular
13.
Neuropsychopharmacology ; 40(12): 2753-63, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25936641

ABSTRACT

The canonical view on the central amygdala has evolved from a simple output station towards a highly organized microcircuitry, in which types of GABAergic neurons in centrolateral (CeL) and centromedial (CeM) subnuclei regulate fear expression and generalization. How these specific neuronal populations are connected to extra-amygdaloid target regions remains largely unknown. Here we show in mice that a subpopulation of GABAergic CeL and CeM neurons projects monosynaptically to brainstem neurons expressing neuropeptide S (NPS). The CeL neurons are PKCδ-negative and are activated during conditioned fear. During fear memory retrieval, the efficacy of this GABAergic influence on NPS neurons is enhanced. Moreover, a large proportion of these neurons (~50%) contain prodynorphin and somatostatin, two neuropeptides inhibiting NPS neurons. We conclude that CeL and CeM neurons inhibit NPS neurons in the brainstem by GABA release and that efficacy of this connection is strengthened upon fear memory retrieval. Thereby, this pathway provides a possible feedback mechanism between amygdala and brainstem routes involved in fear and stress coping.


Subject(s)
Brain Stem/cytology , Central Amygdaloid Nucleus/cytology , Fear/physiology , GABAergic Neurons/physiology , Mental Recall/physiology , Neural Pathways/physiology , Neuropeptides/metabolism , Animals , Brain Stem/drug effects , CREB-Binding Protein/metabolism , Cholera Toxin/metabolism , Conditioning, Classical/drug effects , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/pharmacology , Dynorphins/pharmacology , Fear/drug effects , GABA Agents/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Mental Recall/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuropeptides/genetics , Neurotransmitter Agents/pharmacology , Protein Kinase C-delta/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/genetics , Transcription Factors/metabolism , Transcription Factors/pharmacology
14.
Br J Pharmacol ; 172(12): 3126-40, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25684311

ABSTRACT

BACKGROUND AND PURPOSE: The existence of functional K(v)7 channels in thalamocortical (TC) relay neurons and the effects of the K(+)-current termed M-current (I(M)) on thalamic signal processing have long been debated. Immunocytochemical evidence suggests their presence in this brain region. Therefore, we aimed to verify their existence, pharmacological properties and function in regulating activity in neurons of the ventrobasal thalamus (VB). EXPERIMENTAL APPROACH: Characterization of K(v)7 channels was performed by combining in vitro, in vivo and in silico techniques with a pharmacological approach. Retigabine (30 µM) and XE991 (20 µM), a specific K(v)7 channel enhancer and blocker, respectively, were applied in acute brain slices during electrophysiological recordings. The effects of intrathalamic injection of retigabine (3 mM, 300 nL) and/or XE991 (2 mM, 300 nL) were investigated in freely moving animals during hot-plate tests by recording behaviour and neuronal activity. KEY RESULTS: K(v)7.2 and K(v)7.3 subunits were found to be abundantly expressed in TC neurons of mouse VB. A slow K(+)-current with properties of IM was activated by retigabine and inhibited by XE991. K(v)7 channel activation evoked membrane hyperpolarization, a reduction in tonic action potential firing, and increased burst firing in vitro and in computational models. Single-unit recordings and pharmacological intervention demonstrated a specific burst-firing increase upon I(M) activation in vivo. A K(v)7 channel-mediated increase in pain threshold was associated with fewer VB units responding to noxious stimuli, and increased burst firing in responsive neurons. CONCLUSIONS AND IMPLICATIONS: K(v)7 channel enhancement alters somatosensory activity and may reflect an anti-nociceptive mechanism during acute pain processing.


Subject(s)
Acute Pain/physiopathology , KCNQ Potassium Channels/metabolism , Thalamus/drug effects , Action Potentials , Animals , Anthracenes/pharmacology , Brain/drug effects , Brain/metabolism , Carbamates/pharmacology , Disease Models, Animal , KCNQ2 Potassium Channel/metabolism , KCNQ3 Potassium Channel/metabolism , Mice , Mice, Inbred C57BL , Neurons/drug effects , Pain Threshold/physiology , Phenylenediamines/pharmacology , Thalamus/metabolism
15.
J Physiol ; 592(22): 4911-29, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25239461

ABSTRACT

Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of typical grey matter axons, to investigate the effects of K(+) channel blockers on repolarization. We show that repolarization is composed of a fast tetraethylammonium (TEA)-sensitive component, determining the width and amplitude of the spike, and a slow margatoxin (MgTX)-sensitive depolarized after-potential (DAP). These two components could be recorded at the granule cell soma as antidromic action potentials and from the axons with a newly developed miniaturized grease-gap method. A considerable proportion of fast repolarization remained in the presence of TEA, MgTX, or both. This residual was abolished by the addition of quinine. The importance of proper control of fast repolarization was demonstrated by somatic recordings of antidromic action potentials. In these experiments, the relatively broad K(+) channel blocker 4-aminopyridine reduced the fast repolarization, resulting in bursts of action potentials forming on top of the DAP. We conclude that repolarization of the action potential in parallel fibres is supported by at least three groups of K(+) channels. Differences in their temporal profiles allow relatively independent control of the spike and the DAP, whereas overlap of their temporal profiles provides robust control of axonal bursting properties.


Subject(s)
Action Potentials , Axons/physiology , Cerebellum/physiology , Animals , Axons/drug effects , Cerebellum/cytology , Female , Male , Potassium Channel Blockers/pharmacology , Rats , Rats, Wistar
16.
PLoS One ; 7(3): e33083, 2012.
Article in English | MEDLINE | ID: mdl-22427957

ABSTRACT

BACKGROUND: The olivary pretectal nucleus (OPN) is a small midbrain structure responsible for pupil constriction in response to eye illumination. Previous electrophysiological studies have shown that OPN neurons code light intensity levels and therefore are called luminance detectors. Recently, we described an additional population of OPN neurons, characterized by a slow rhythmic pattern of action potentials in light-on conditions. Rhythmic patterns generated by these cells last for a period of approximately 2 minutes. METHODOLOGY: To answer whether oscillatory OPN cells are light responsive and whether oscillatory activity depends on retinal afferents, we performed in vivo electrophysiology experiments on urethane anaesthetized Wistar rats. Extracellular recordings were combined with changes in light conditions (light-dark-light transitions), brief light stimulations of the contralateral eye (diverse illuminances) or intraocular injections of tetrodotoxin (TTX). CONCLUSIONS: We found that oscillatory neurons were able to fire rhythmically in darkness and were responsive to eye illumination in a manner resembling that of luminance detectors. Their firing rate increased together with the strength of the light stimulation. In addition, during the train of light pulses, we observed two profiles of responses: oscillation-preserving and oscillation-disrupting, which occurred during low- and high-illuminance stimuli presentation respectively. Moreover, we have shown that contralateral retina inactivation eliminated oscillation and significantly reduced the firing rate of oscillatory cells. These results suggest that contralateral retinal innervation is crucial for the generation of an oscillatory pattern in addition to its role in driving responses to visual stimuli.


Subject(s)
Action Potentials/radiation effects , Light , Neurons/physiology , Olivary Nucleus/physiology , Periodicity , Analysis of Variance , Animals , Fourier Analysis , Male , Neurons/radiation effects , Olivary Nucleus/cytology , Photic Stimulation , Rats , Rats, Wistar
17.
Eur J Neurosci ; 27(10): 2657-64, 2008 May.
Article in English | MEDLINE | ID: mdl-18547249

ABSTRACT

Oscillations with a period between 1 and 4 min have been previously observed in many visual system structures. To determine whether similar oscillations in neuronal firing also exist in rat pretectum, recordings of neuronal activity were made with standard extracellular recording methods in vivo. Oscillations with a mean period of approximately 140 s were identified in 127 recording sites in olivary pretectal nucleus (OPT). Prolonged iontophoretical current ejection of bicuculline, an antagonist of GABA(A) receptors, increased the firing rate but did not disrupt the oscillatory pattern of activity. This suggests that rhythmic activity of OPT neurons is either intrinsic to the nucleus or driven by rhythmic excitatory input. It is worth noting that oscillations within OPT were synchronized with the above-described oscillatory activity in the ipsilateral intergeniculate leaflet (IGL). In the case of simultaneous double recordings from OPT and contralateral OPT or IGL, oscillations were uncorrelated. Our findings suggest functional coupling of the OPT with ipsilateral IGL, and imply that OPT, besides its well established role in pupil constriction, might be involved in modulation of the neuronal mechanism of the circadian timing system, as was suggested previously. Alternatively, IGL might be involved in pupil diameter regulation.


Subject(s)
Action Potentials/physiology , Biological Clocks/physiology , Geniculate Bodies/physiology , Neurons/physiology , Superior Colliculi/physiology , Tegmentum Mesencephali/physiology , Animals , Bicuculline/pharmacology , GABA Antagonists/pharmacology , GABA-A Receptor Antagonists , Geniculate Bodies/cytology , Iris/innervation , Iris/physiology , Male , Miosis , Pupil/physiology , Rats , Rats, Wistar , Reaction Time/physiology , Receptors, GABA-A/metabolism , Superior Colliculi/cytology , Synaptic Transmission/physiology , Tegmentum Mesencephali/cytology , Time Factors , Visual Pathways/cytology , Visual Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...