Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612389

ABSTRACT

Alkaline earth metal oxide (MgO, CaO, SrO) catalysts supported on BEA zeolite were prepared by a wet impregnation method and tested in the transesterification reaction of rapeseed oil with methanol towards the formation of biodiesel (FAMEs-fatty acid methyl esters). To assess the influence of the SiO2/Al2O3 ratio on the catalytic activity in the tested reaction, a BEA zeolite carrier material with different Si/Al ratios was used. The prepared catalysts were tested in the transesterification reaction at temperatures of 180 °C and 220 °C using a molar ratio of methanol/oil reagents of 9:1. The transesterification process was carried out for 2 h with the catalyst mass of 0.5 g. The oil conversion value and efficiency towards FAME formation were determined using the HPLC technique. The physicochemical properties of the catalysts were determined using the following research techniques: CO2-TPD, XRD, BET, FTIR, and SEM-EDS. The results of the catalytic activity showed that higher activity in the tested process was confirmed for the catalysts supported on the BEA zeolite characterized by the highest silica/alumina ratio for the reaction carried out at a temperature of 220 °C. The most active zeolite catalyst was the 10% CaO/BEA system (Si/Al = 300), which showed the highest triglyceride (TG) conversion of 90.5% and the second highest FAME yield of 94.6% in the transesterification reaction carried out at 220 °C. The high activity of this system is associated with its alkalinity, high value of the specific surface area, the size of the active phase crystallites, and its characteristic sorption properties in relation to methanol.


Subject(s)
Biofuels , Zeolites , Magnesium Oxide , Methanol , Rapeseed Oil , Silicon Dioxide , Fatty Acids , Oxides
2.
Materials (Basel) ; 14(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066469

ABSTRACT

This work provides valuable information about unexplored catalytic systems tested in the transesterification reaction of vegetable oil with methanol. It was demonstrated that natural zeolite treatment leads to enhanced catalytic activity and yield of biodiesel production. The activation of the catalytic material in a mixture of 5% H2-95% Ar resulted in an improvement of the values of the TG conversion and fatty acid methyl esters (FAME) yield. In addition, it was proven that the incorporation of CaO, MgO and SrO oxides onto the natural zeolite surface improves the TG conversion and FAME yield values in the transesterification reaction.

3.
Materials (Basel) ; 14(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374381

ABSTRACT

Biodiesel production from rapeseed oil and methanol via transesterification reaction facilitated by various monometallic catalyst supported on natural zeolite (NZ) was investigated. The physicochemical characteristics of the synthesized catalysts were studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller method (BET), temperature-programmed-reduction in hydrogen (H2-TPR), temperature-programmed-desorption of ammonia (NH3-TPD), Scanning Electron Microscope equipped with EDX detector (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) methods. The highest activity and methyl ester yields were obtained for the Pt/NZ catalyst. This catalyst showed the highest triglycerides conversion of 98.9% and fatty acids methyl esters yields of 94.6%. The activity results also confirmed the high activity of the carrier material (NZ) itself in the investigated reaction. Support material exhibited 90.5% of TG conversion and the Fatty Acid Methyl Esters yield (FAME) of 67.2%. Introduction of noble metals improves the TG conversion and FAME yield values. Increasing of the metal loading from 0.5 to 2 wt.% improves the reactivity properties of the investigated catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...