Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 283(1): 68-73, 2009 Sep 28.
Article in English | MEDLINE | ID: mdl-19368997

ABSTRACT

The cyclic-AMP dependent protein kinase (PKA) signaling pathway regulates cell growth, development, metabolism, and gene expression. Peripheral blood of cancer patients but not normal individuals, shows increased catalytic subunit levels of PKA (PKAc). We showed here that this extracellular form of PKAc (ECPKA) from conditioned media of cultured cancer cells as well as purified PKAc inhibit angiogenesis, using the in utero chicken embryo chorioallantoic membrane assay. Inhibition of angiogenesis is partially reversed by PKI, a peptide inhibitor of PKA, thus suggesting an anti-angiogenic role for ECPKA. The significance of ECPKA in cancer is discussed.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Neoplasms/blood supply , Neoplasms/enzymology , Neovascularization, Pathologic/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Chick Embryo , Culture Media, Conditioned , Humans
2.
Mol Cancer Ther ; 5(5): 1371-82, 2006 May.
Article in English | MEDLINE | ID: mdl-16731771

ABSTRACT

Platelet 12-lipoxygenase (P-12-LOX) is overexpressed in different types of cancers, including prostate cancer, and the level of expression is correlated with the grade of this cancer. Arachidonic acid is metabolized by 12-LOX to 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], and this biologically active metabolite is involved in prostate cancer progression by modulating cell proliferation in multiple cancer-related pathways inducing angiogenesis and metastasis. Thus, inhibition of P-12-LOX can reduce these two processes. Several lipoxygenase inhibitors are known, including plant and mammalian lipoxygenases, but only a few of them are known inhibitors of P-12-LOX. Curcumin is one of these lipoxygenase inhibitors. Using a homology model of the three-dimensional structure of human P-12-LOX, we did computational docking of synthetic curcuminoids (curcumin derivatives) to identify inhibitors superior to curcumin. Docking of the known inhibitors curcumin and NDGA to P-12-LOX was used to optimize the docking protocol for the system in study. Over 75% of the compounds of interest were successfully docked into the active site of P-12-LOX, many of them sharing similar binding modes. Curcuminoids that did not dock into the active site did not inhibit P-12-LOX. From a set of the curcuminoids that were successfully docked and selected for testing, two were found to inhibit human lipoxygenase better than curcumin. False-positive curcuminoids showed high LogP (theoretical) values, indicating poor water solubility, a possible reason for lack of inhibitory activity or/and nonrealistic binding. Additionally, the curcuminoids inhibiting P-12-LOX were tested for their ability to reduce sprout formation of endothelial cells (in vitro model of angiogenesis). We found that only curcuminoids inhibiting human P-12-LOX and the known inhibitor NDGA reduced sprout formation. Only limited inhibition of sprout formation at approximately IC(50) concentrations has been seen. At IC(50), a substantial amount of 12-HETE can be produced by lipoxygenase, providing a stimulus for angiogenic sprouting of endothelial cells. Increasing the concentration of lipoxygenase inhibitors above IC(50), thus decreasing the concentration of 12(S)-HETE produced, greatly reduced sprout formation for all inhibitors tested. This universal event for all tested lipoxygenase inhibitors suggests that the inhibition of sprout formation was most likely due to the inhibition of human P-12-LOX but not other cancer-related pathways.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Arachidonic Acid/metabolism , Blood Platelets/enzymology , Curcumin/analogs & derivatives , Endothelium, Vascular/drug effects , Lipoxygenase Inhibitors , Amino Acid Sequence , Animals , Antineoplastic Agents/chemical synthesis , Arachidonate 12-Lipoxygenase/chemistry , Arachidonate 12-Lipoxygenase/metabolism , Blood Platelets/cytology , Cells, Cultured , Curcumin/chemistry , Curcumin/pharmacology , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Humans , Mice , Models, Molecular , Molecular Sequence Data
3.
Int J Mol Med ; 17(3): 437-47, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16465390

ABSTRACT

Plasminogen activator inhibitor-1 (PAI-1), a member of the serpin super-family, forms a covalent complex with its target proteinases, such as tissue and urokinase plasminogen activators. Thus, PAI-1 controls the physiological and pathological proteolysis. An abnormal expression of PAI-1 has been observed in different diseases, which can be treated by returning the proteolysis back to normal physiological levels. It has been reported that some PAI-1 inhibitors neutralize its activity by accelerating the conversion of PAI-1 into a latent form. We have found small organic chemicals that also neutralize PAI-1 activity, but by a different mechanism. Using the NBD fluorescent probe [N,N'-dimethyl-N-(acetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)] incorporated into the reactive center loop (RCL) of PAI-1, we measured the kinetics of conversion from an active to a latent form. Unexpectedly, we found that some inhibitors of PAI-1 arrest this serpin in its active form instead of increasing the speed of conversion. Using docking calculations, we located two possible binding sites for these chemicals. The sites are in proximity of the P1/P1' amino acids of the RCL of PAI-1. Binding in this area can inactivate PAI-1 and additionally create a steric obstacle on the RCL making insertion of this loop between the A3 and A5 strands more difficult; hence abolishing a necessary step in the conversion of this protein into the latent form. Additionally, PAI-1 inhibitors link the RCL of one PAI-1 molecule with the strand 3C and strand 4C or helix A and strand 1B regions of the other PAI-1 molecule aiding polymerization or stabilizing the junction of the two. The polymerization of PAI-1 reduces PAI-1 activity by encapsulating the critical RCL fragment inside the formed PAI-1/PAI-1 polymers.


Subject(s)
Biopolymers/metabolism , Plasminogen Activator Inhibitor 1/chemistry , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Inactivators/metabolism , Amino Acid Sequence , Binding Sites/drug effects , Fluorescent Dyes , Kinetics , Ligands , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Protein Binding/drug effects , Protein Conformation , Protein Structure, Secondary , Sequence Analysis, Protein , Spectrometry, Fluorescence
4.
Phys Med Biol ; 49(14): 3209-25, 2004 Jul 21.
Article in English | MEDLINE | ID: mdl-15357193

ABSTRACT

Advances in photodynamic therapy (PDT) treatment for prostate cancer can be achieved either by improving selectivity of the photosensitizer towards prostate gland tissue or improving the dosimetry by means of individualized treatment planning using currently available photosensitizers. The latter approach requires the ability to measure, among other parameters, the fluence rate at different positions within the prostate and the ability to derive the tissue optical properties. Here fibre optic probes are presented capable of measuring the fluence rate throughout large tissue volumes and a method to derive the tissue optical properties for different volumes of the prostate. The responsivity of the sensors is sufficient to detect a fluence rate of 0.1 mW cm(-2). The effective attenuation coefficient in the canine prostate at 660 nm is higher at the capsule (2.15+/-0.19 cm(-1)) than in proximity of the urethra (1.84+/-0.36 cm(-1)). Significant spatial and temporal intra- and inter-canine variability in the tissue optical properties was noted, highlighting the need for individualized monitoring of the fluence rate for improved dosimetry.


Subject(s)
Photochemotherapy/methods , Prostate/radiation effects , Prostatic Neoplasms/radiotherapy , Radiometry/methods , Algorithms , Animals , Dogs , Light , Male , Models, Statistical , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Prostatic Neoplasms/pathology , Time Factors
5.
J Urol ; 172(2): 739-43, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15247773

ABSTRACT

PURPOSE: Photodynamic therapy (PDT) is an emerging, minimally invasive therapy for prostate cancer that depends on the sequestration of a photosensitizing drug within targeted tissue. The photosensitizer is subsequently activated by light of a specific wavelength, resulting in destruction of the targeted tissue. Successful treatment requires knowledge of the optical properties of the target tissue, a critical element for therapy. MATERIALS AND METHODS: Adult canines were injected with tin etiopurpurin dichloride (1.0 mg/kg) as a liposome emulsion vehicle in saline 24 hours prior to light treatment. Laser light was delivered to the prostate via a 400 microm optical fiber fitted with a 2.0 cm cylindrical diffuser and optical properties of the prostate were measured. RESULTS: In this study we determined the attenuation coefficient and critical fluence in the canine prostate. Our studies shown that the attenuation coefficient is not uniform but higher at the base (average for all animals 2.59 to 2.79 cm-1) than in the mid section or apex of the prostate (1.71 to 1.90 cm-1). Significant differences among dogs (0.11 to 12.70 cm-1) were found. In some cases we observed a fluctuation of the attenuation coefficient during treatment. We also established experimentally the minimum energy (1449 mJ/cm2) needed (critical fluence) to produce necrosis. Experimentally establishing the values of effective attenuation and critical fluence is necessary to predict the area of ablation during PDT and protect surrounding organs from over treatment. CONCLUSIONS: Based on our results it is evident that for PDT of the prostate to be successful the optical parameters of the prostate must be measured and monitored during treatment. We suggest that the optimum way of doing this is real-time computerized monitoring combined with simulation PDT.


Subject(s)
Photochemotherapy , Porphyrins , Prostate/radiation effects , Prostatic Neoplasms/drug therapy , Radiation-Sensitizing Agents , Animals , Computer Simulation , Dogs , Lasers , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...