Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 17258, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828024

ABSTRACT

X-ray spectroscopy is a demanded tool across multiple user communities. Here we report on a new station for X-ray emission spectroscopy at the Extreme Light Infrastructure Beamlines Facility. The instrument utilizes the von Hamos geometry and works with a number of different sample types, notably including liquid systems. We demonstrate a simple and reliable method for source position control using two cameras. This approach addresses energy calibration dependence on sample position, which is a characteristic source of measurement uncertainty for wavelength dispersive spectrometers in XES arrangement. We also present a straightforward procedure for energy calibration of liquid and powder samples to a thin film reference. The developed instrumentation enabled us to perform the first experimental determination of the Kα lines of liquidized K3Fe(CN)6 as well as powdered and liquidized FeNH4(SO4)2. Finally, we report on proof-of-principle use of a colliding jet liquid sample delivery system in an XES experiment.

2.
Opt Express ; 29(17): 27193-27211, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34615140

ABSTRACT

The main advantage of wavelength-dispersive spectrometers applied in X-ray study is their high energy resolution. The design and construction of spectrometer, usually dedicated to the specific experimental systems, for example synchrotron based setups, need information about the characteristics of the main elements of the spectrometer such as X-ray optics elements, crystals and detectors. Such information can be obtained using Monte-Carlo simulations. In this paper, the Monte-Carlo simulations of X-ray tracing in parallel-beam wavelength-dispersive spectrometer (PBWDS), equipped with polycapillary optics, are presented and discussed. The study concentrates on the description of the polycapillary model, simulations of the properties of X-ray polycapillary optics and, finally, on the simulations of X-ray track in the spectrometer designed and installed at the ID21 beamline at the European Synchrotron Radiation Facility (ESRF, Grenoble, France). The results of simulations were compared with experimental data obtained for different registered X-ray energies and spectrometer crystals, showing good agreement. The obtained results showed that the X-ray transmission in the tested polycapillary optics is at the level of 15%, while the divergence of the outgoing beam changes from 8 mrad to 3 mrad with an increase of photon energy from 2 keV to 10 keV. The spectrometer provides an energy resolution of 5 eV and 33 eV in the energy range of 1.4 keV - 6.5 keV. The developed simulation program can be successfully used for the construction of spectrometers dedicated to the different experimental conditions.

3.
Rev Sci Instrum ; 90(6): 063106, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31255015

ABSTRACT

The design and performance of a high-resolution transmission-type X-ray spectrometer for use in the 15-26 keV energy range at synchrotron light sources is reported. Monte Carlo X-ray-tracing simulations were performed to optimize the performance of the transmission-type spectrometer, based on the DuMond geometry, for use at the Super X-ray absorption beamline of the Swiss Light Source at the Paul Scherrer Institute. This spectrometer provides an instrumental energy resolution of 3.5 eV for X-ray emission lines around 16 keV and 12.5 eV for emission lines at 26 keV, which is comparable to the natural linewidths of the K and L X-ray transitions in the covered energy range. First experimental data are presented and compared with results of the Monte Carlo X-ray simulations.

4.
Struct Dyn ; 6(2): 024901, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31041363

ABSTRACT

"Probe-before-destroy" methodology permitted diffraction and imaging measurements of intact specimens using ultrabright but highly destructive X-ray free-electron laser (XFEL) pulses. The methodology takes advantage of XFEL pulses ultrashort duration to outrun the destructive nature of the X-rays. Atomic movement, generally on the order of >50 fs, regulates the maximum pulse duration for intact specimen measurements. In this contribution, we report the electronic structure damage of a molecule with ultrashort X-ray pulses under preservation of the atoms' positions. A detailed investigation of the X-ray induced processes revealed that X-ray absorption events in the solvent produce a significant number of solvated electrons within attosecond and femtosecond timescales that are capable of coulombic interactions with the probed molecules. The presented findings show a strong influence on the experimental spectra coming from ionization of the probed atoms' surroundings leading to electronic structure modification much faster than direct absorption of photons. This work calls for consideration of this phenomenon in cases focused on samples embedded in, e.g., solutions or in matrices, which in fact concerns most of the experimental studies.

5.
Phys Chem Chem Phys ; 18(47): 32486-32493, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27869264

ABSTRACT

Oxygen storage materials such as ceria are used in many catalytic applications because they can reversibly bind and release oxygen. Tools are needed to observe and quantify this activity which involves a change in the cerium oxidation state and to understand the involvement of cerium in catalytic processes. To prove that cerium changes its oxidation state in the catalytic cycle the transient rates of Ce3+ formation and decay should be compared to the overall reaction rate. For such mechanistic studies the time resolution is essential as the quantification of the Ce3+ species should be faster than the reaction rate. However, it is challenging to follow the dynamic changes of the cerium oxidation state under reaction conditions, especially when the concentration of cerium atoms involved in the reaction cycle is low. In this paper, we evaluate the sensitivity of high-resolution X-ray emission-based methods for the in situ time-resolved quantification of small concentrations of Ce3+ in ceria-based materials. We demonstrate that resonant X-ray emission spectroscopy (RXES) at optimal excitation energy is more sensitive than high energy resolution off-resonant spectroscopy (HEROS) and non-resonant X-ray emission spectroscopy (non-resonant XES) and that it can track the reactivity of less than 0.3% of cerium atoms in a 1% Pt/CeO2 catalyst in a plug-flow reactor with sub-second time resolution. These results demonstrate that X-ray emission-based methods can be used as very sensitive tools and provide new insights into dynamic changes of the oxidation state in reducible oxides in a variety of applications.

6.
Environ Sci Technol ; 49(18): 11176-81, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26320742

ABSTRACT

Organisms have developed metal regulatory mechanisms in response to changes in the bioavailability of trace metals. Just as metal bioavailability dictates cellular uptake, intracellular metal speciation determines the availability of metals to exert biological effects. However, the missing link in understanding the relationship between metal uptake and biological responses is the ability to accurately measure intracellular metal speciation. We conducted Pb exposure studies on the well-characterized model green alga Chlamydomonas reinhardtii and identified temporal changes in intracellular Pb speciation under conditions relevant for fresh water ecosystems using resonant X-ray emission spectroscopy (RXES), which possesses enhanced sensitivity to functional group chemistry relative to X-ray absorption spectroscopy (XAS). Analysis of RXES maps show that only a small fraction of total intracellular Pb was complexed by thiol groups. Initial sequestration of Pb in oxides and inorganic phosphate was followed by binding of Pb to organic phosphate, suggesting potential interference in vital cellular functions. These results contrast proposed detoxification responses involving complexation by thiol groups from peptides.


Subject(s)
Chlamydomonas/chemistry , Intracellular Space/chemistry , Lead/isolation & purification , Biological Availability , Spectrometry, X-Ray Emission , Time Factors
7.
Phys Rev Lett ; 112(17): 173003, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24836243

ABSTRACT

X-ray emission spectra recorded in the off-resonant regime carry information on the density of unoccupied states. It is known that by employing the Kramers-Heisenberg formalism, the high energy resolution off-resonant spectroscopy (HEROS) is equivalent to the x-ray absorption spectroscopy (XAS) technique and provides the same electronic state information. Moreover, in the present Letter we demonstrate that the shape of HEROS spectra is not modified by self-absorption effects. Therefore, in contrast to the fluorescence-based XAS techniques, the recorded shape of the spectra is independent of the sample concentration or thickness. The HEROS may thus be used as an experimental technique when precise information about specific absorption features and their strengths is crucial for chemical speciation or theoretical evaluation.

8.
Dalton Trans ; 43(23): 8599-608, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24406400

ABSTRACT

The two novel manganese(II) complexes with 2-hydroxymethylpyridine (2-CH2OHpy) {[Mn2(µ-Cl)2(2-CH2OHpy)4]Cl2·2H2O (1)} and 2-hydroxyethylpyridine (2-(CH2)2OHpy) {[Mn(2-(CH2)2OHpy)2(NCS)2] (2)} were synthesized and characterized by means of X-ray diffraction, IR, EPR, HF EPR spectroscopy, magnetic and TG/DTG data. The complexes show catalase-like activity in neutral aqueous solution since they were able to disproportionate H2O2 to harmless H2O and O2. Both complexes act as true catalysts since they reverted to their original form after depleting all the H2O2, as suggested by the operando resonant inelastic X-ray spectroscopy (RIXS) measurements.


Subject(s)
Alcohols/chemistry , Hydrogen Peroxide/chemistry , Manganese/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Catalysis , Ligands , Organometallic Compounds/chemical synthesis , Water/chemistry
9.
Struct Dyn ; 1(2): 021101, 2014 Mar.
Article in English | MEDLINE | ID: mdl-26798772

ABSTRACT

Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10(-18) s) to femtoseconds (10(-15) s) and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS), we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

10.
Rev Sci Instrum ; 84(9): 093104, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089813

ABSTRACT

We report on a high-resolution transmission-type curved crystal spectrometer based on the modified DuMond slit geometry. The spectrometer was developed at the University of Fribourg for the study of photoinduced X-ray spectra. K and L X-ray transitions with energies above about 10 keV can be measured with an instrumental resolution comparable to their natural linewidths. Construction details and operational characteristics of the spectrometer are presented. The variation of the energy resolution as a function of the focal distance and diffraction order is discussed. The high sensitivity of the spectrometer is demonstrated via the 2s-1s dipole-forbidden X-ray transition of Gd which could be observed despite its extremely low intensity. The precision of the instrument is illustrated by comparing the sum of the energies of the Au K-L2 and L2-M3 cascading transitions with the energy of the crossover K-M3 transition as well as by considering the energy differences of the Gd Kα1 X-ray line measured at five different diffraction orders. Finally, to demonstrate the versatility of the spectrometer, it is shown that the latter can also be used for in-house extended X-ray absorption fine structure measurements.

11.
Rev Sci Instrum ; 84(12): 123102, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24387415

ABSTRACT

We report on the application of a two-dimensional position-sensitive area detector towards grazing emission x-ray fluorescence (GEXRF) spectroscopy. GEXRF allows for surface-sensitive studies with nanometer-scale accuracy in the depth direction by measuring the intensity variation of an x-ray fluorescence line with the grazing emission angle. The presented experimental setup is based on a fixed sample-detector arrangement and does not require any moving components. We show that the dispersion of the grazing emission angle along a position-sensitive detector allows to acquire with an excellent angular resolution a full GEXRF profile in a single measurement. Moreover, the use of a two-dimensional detector allows to perform experiments with an increased solid angle of detection per emission angle. This results in combination with the nonsequential and simultaneous acquisition of the GEXRF profiles of different emission lines in considerably reduced acquisition times. The realization, the demands, and the main characteristics of the scanning-free GEXRF setup will be presented. A few experimental examples will serve to illustrate the analytical possibilities offered by the presented setup.

12.
Rev Sci Instrum ; 83(10): 103105, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126749

ABSTRACT

We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

13.
Phys Rev Lett ; 107(5): 053001, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21867065

ABSTRACT

Experimental evidence for the correlated two-electron one-photon transitions (1s(-2)→2s(-1)2p(-1)) following single-photon K-shell double ionization is reported. The double K-shell vacancy states in solid Mg, Al, and Si were produced by means of monochromatized synchrotron radiation, and the two-electron one-photon radiative transitions were observed by using a wavelength dispersive spectrometer. The two-electron one-photon transition energies and the branching ratios of the radiative one-electron to two-electron transitions were determined and compared to available perturbation theory predictions and configuration interaction calculations.

14.
J Synchrotron Radiat ; 17(3): 400-8, 2010 May.
Article in English | MEDLINE | ID: mdl-20400840

ABSTRACT

The development of a wavelength-dispersive spectrometer for microfluorescence analysis at the X-ray Microscopy ID21 beamline of the European Synchrotron Radiation Facility (ESRF) is reported. The spectrometer is based on a polycapillary optic for X-ray fluorescence collection and is operated in a flat-crystal geometry. The design considerations as well as operation characteristics of the spectrometer are presented. The achieved performances, in particular the energy resolution, are compared with the results of Monte Carlo simulations. Further improvement in the energy resolution, down to approximately eV range, by employing a double-crystal geometry is examined. Finally, examples of applications requiring both spatial and spectral resolutions are presented.

15.
Phys Rev Lett ; 102(14): 143001, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19392433

ABSTRACT

By means of a high resolution resonant inelastic x-ray scattering spectroscopy, we have for the first time separated spectral features pertaining to different two-electron atomic processes in the vicinity of an inner-shell threshold. Contributions of shakeoff, shakeup, and resonant 1s3p double excitations were extracted from the Ar KM-M{2,3}M x-ray satellite line intensity measured as a function of photon energy from [1s3p] double excitation threshold to saturation. The isolated [1s3p]nln'l' excitation spectrum is critically compared to the outcome of the multiconfiguration Dirac-Fock model with relaxation.

16.
Phys Rev Lett ; 102(7): 073006, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19257666

ABSTRACT

We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

17.
Rev Sci Instrum ; 78(9): 093102, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17902942

ABSTRACT

High-resolution x-ray measurements were performed with a von Hamos-type bent crystal spectrometer using for the detection of the diffracted photons either a back-illuminated charge-coupled device (CCD) camera or a front-illuminated one. For each CCD the main x-ray emission lines (e.g., Kalpha, Kbeta, Lalpha, and Lbeta) of a variety of elements were measured in order to probe the performances of the two detectors between 1 and 18 keV. From the observed x-ray lines the linearity of the energy response, the noise level, the energy resolution, and the quantum efficiency ratio of the two CCDs were determined.

18.
Phys Rev Lett ; 97(7): 073001, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-17026224

ABSTRACT

We report on the first high-resolution measurements of the K x-ray resonant Raman scattering (RRS) in Si. The measured x-ray RRS spectra, interpreted using the Kramers-Heisenberg approach, revealed spectral features corresponding to electronic excitations to the conduction and valence bands in silicon. The total cross sections for the x-ray RRS at the 1s absorption edge and the 1s-3p excitation were derived. The Kramers-Heisenberg formalism was found to reproduce quite well the x-ray RRS spectra, which is of prime importance for applications of the total-reflection x-ray fluorescence technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...