Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801976

ABSTRACT

Biochar application has been reported to improve the physical, chemical, and hydrological properties of soil. However, the information about the size fraction composition of the applied biochar as a factor that may have an impact on the properties of soil-biochar mixtures is often underappreciated. Our research shows how sunflower husk biochar (pyrolyzed at 650 °C) can modify the water retention characteristics of arable sandy soil depending on the biochar dose (up to 9.52 wt.%) and particle size (<50 µm, 50-100 µm, 100-250 µm). For comparison, we used soil samples mixed with biochar passed through 2 mm sieve and an unamended reference. The addition of sieved biochar to the soil caused a 30% increase in the available water content (AWC) in comparing to the soil without biochar. However, the most notable improvement (doubling the reference AWC value from 0.078 m3 m-3 to 0.157 m3 m-3) was observed at the lowest doses of biochar (0.95 and 2.24 wt.%) and for the finest size fractions (below 100 µm). The water retention effects on sandy soil are explained as the interplay between the dose, the size of biochar particles, and the porous properties of biochar fractions.

2.
J Environ Qual ; 49(2): 428-439, 2020 Mar.
Article in English | MEDLINE | ID: mdl-33016425

ABSTRACT

Biochar (charcoal made from biomass in the pyrolysis process) has found broad application in agriculture. It helps to improve both the physical and chemical properties of soil through decontamination of heavy metals and pesticides. This work examines the potential for biochar application to improve the radiological condition of soil. We investigated the activity concentration of natural and anthropogenic radionuclides in soil samples collected from fields treated with various doses of biochar (in 1-100 Mg ha-1 ). In addition, we directly measured radon emission rate at the experimental fields. The analyses were performed using gamma spectrometry and an active method for radon emission using an AlphaGUARD instrument equipped with an accumulation box. The results of activity concentration assessments for six radionuclides, five natural and one anthropogenic, show that the only effect of biochar application into the soil is associated with the reduction of soil bulk density by this material. The radon emission rate increased by 6 mBq m-1 s-1 , on average, depending on the biochar dose (from 1 to 100 Mg ha-1 ). Our results demonstrate that application of biochar into soil kept without vegetation had a limited influence on the radioactivity in the environment.


Subject(s)
Radioactivity , Soil Pollutants/analysis , Charcoal , Soil
3.
Sensors (Basel) ; 19(16)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31394738

ABSTRACT

Water resources on Earth become one of the main concerns for society. Therefore, remote sensing methods are still under development in order to improve the picture of the global water cycle. In this context, the microwave bands are the most suitable to study land-water resources. The Soil Moisture and Ocean Salinity (SMOS), satellite mission of the European Space Agency (ESA), is dedicated for studies of the water in soil over land and salinity of oceans. The part of calibration/validation activities in order to improve soil moisture retrieval algorithms over land is done with ground-based passive radiometers. The European Space Agency L-band Microwave Radiometer (ELBARA III) located near the Bubnów wetland in Poland is capable of mapping microwave emissivity at the local scale, due to the azimuthal and vertical movement of the horn antenna. In this paper, we present results of the spatio-temporal mapping of the brightness temperatures on the heterogeneous area of the Bubnów test-site consisting of an area with variable organic matter (OM) content and different type of vegetation. The soil moisture (SM) was retrieved with the L-band microwave emission of the biosphere (L-MEB) model with simplified roughness parametrization (SRP) coupling roughness and optical depth parameters. Estimated soil moisture values were compared with in-situ data from the automatic agrometeorological station. The results show that on the areas with a relatively low OM content (4-6%-cultivated field) there was good agreement between measured and estimated SM values. Further increase in OM content, starting from approximately 6% (meadow wetland), caused an increase in bias, root mean square error (RMSE), and unbiased RMSE (ubRMSE) values and a general drop in correlation coefficient (R). Despite a span of obtained R values, we found that time-averaged estimated SM using the L-MEB SRP approach strongly correlated with OM contents.

4.
J Anim Physiol Anim Nutr (Berl) ; 103(2): 675-686, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30618103

ABSTRACT

The aim of the study was to evaluate the effects of a diet containing different levels of Cu in two different chemical forms (carbonate and nanoparticles) on redox reactions and epigenetic changes in a rat model. For 4 weeks, five experimental groups (eight rats in each) were fed diets with two dosages of added Cu (standard-6.5 mg/kg or half of the standard dosage-3.25 mg/kg, and as a negative control no additional Cu in the mineral mixture) in two forms (standard-CuCO3 and copper nanoparticles). Addition of Cu nanoparticles resulted in higher Cp (ceruloplasmin) activity and LOOH (lipid peroxides) and MDA (malondialdehyde) content, as well as decrease the CAT (catalase) activity and level of PC (protein carbonyl), 3-NT (3-nitrotyrosine), 8-OHdG (8-hydroxydeoxyguanosine), GSH + GSSG (total glutathione) and DNA methylation. Reducing the dose of copper resulted in a decrease in the level of LOOH and GSH + GSSG as well as CAT activity, but increased the level of PC and methylated DNA. Based on these evidence, we concluded that addition of copper nanoparticles in the diet reduces protein oxidation and nitration as well as DNA oxidation and methylation. Lowering the level of Cu in the diet increases the oxidation of proteins and DNA methylation.


Subject(s)
Copper/pharmacology , Epigenesis, Genetic/drug effects , Metal Nanoparticles/chemistry , Animals , Copper/chemistry , Copper/deficiency , Dietary Supplements , Oxidation-Reduction , Rats
5.
Nanomedicine ; 12(4): 1095-1103, 2016 May.
Article in English | MEDLINE | ID: mdl-26772425

ABSTRACT

High antifungal activity is reported, in comparison with commercially available products, of a novel hybrid system based on silver nanoparticles synthesized using a popular antifungal macrocyclic polyene amphotericin B (AmB) acting both as a reducing and stabilizing/capping agent. The synthesis reaction proceeds in an alkaline environment which prevents aggregation of AmB itself and promotes nanoparticle formation. The innovative approach produces monodisperse (PDI=0.05), AmB-coated silver nanoparticles (AmB-AgNPs) with the diameter ~7nm. The products were characterized using imaging (electron microscopy) and spectroscopic (UV-vis and infrared absorption, dynamic light scattering and Raman scattering) methods. The nanoparticles were tested against Candida albicans, Aspergillus niger and Fusarium culmorum species. For cytotoxicity studies CCD-841CoTr and THP-1 cell lines were used. Particularly high antifungal activity of AmB-AgNPs is interpreted as the result of synergy between the antifungal activity of amphotericin B and silver antimicrobial properties (Ag(+) ions release). FROM THE CLINICAL EDITOR: Amphotericin B (AmB) is a common agent used for the treatment against severe fungal infections. In this article, the authors described a new approach in using a combination of AmB and silver nanoparticles, in which the silver nanoparticles were synthesized and stabilized by AmB. Experimental data confirmed synergistic antifungal effects between amphotericin B and silver. This novel synthesis process could potentially be important in future drug development and fabrication.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Mycoses/drug therapy , Nanoparticles/administration & dosage , Amphotericin B/chemical synthesis , Amphotericin B/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Aspergillus niger/drug effects , Aspergillus niger/pathogenicity , Candida albicans/drug effects , Candida albicans/pathogenicity , Drug Delivery Systems , Fusarium/drug effects , Fusarium/pathogenicity , Humans , Mycoses/microbiology , Nanoparticles/chemistry , Silver/chemistry , Silver/pharmacology
6.
J Photochem Photobiol B ; 151: 83-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26208291

ABSTRACT

Amphotericin B (AmB) belongs to naturally occurring fluorescent antibiotics, commonly used in the treatment of life-threatening fungal infections. Open question regarding mechanism of action of this molecule calls for its orientation and organization studies in biomembranes. Here, we present studies on linear dichroism and fluorescence polarization of AmB embedded in isotropic and oriented poly(vinyl) alcohol films to characterize their transition dipole moments to low energy excited electronic transitions S1 (2 Ag(-)) and S2 (1 Bu(+)). The dichroic ratio and fluorescence anisotropy data were analyzed for stretched PVA films doped AmB. The results show that the transition moment for absorption makes an angle φ = 27° ± 2° with the molecular axis of AmB defined by the film stretching direction. The angles between the absorption and emission transition moments have been found for both the low excited electronic states, S2 (ß = 4° ± 5°) and S1 (ß = 6° ± 5°). The fluorescence anisotropy analysis from the S2 state reveals additional component assigned to antiparallel AmB dimeric structure.


Subject(s)
Amphotericin B/chemistry , Fluorescence Polarization , Polyvinyl Alcohol/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
7.
J Phys Chem B ; 118(48): 13821-32, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25384264

ABSTRACT

Amphotericin B (AmB) is a lifesaving antibiotic used to treat deep-seated mycotic infections. Both the pharmaceutical activity and highly toxic side effects of the drug rely on its interaction with biomembranes, which is governed by the molecular organization of AmB. In the present work, we present a detailed analysis of self-assembly of AmB molecules in different environments, interesting from the physiological standpoint, based on molecular spectroscopy techniques: electronic absorption, circular dichroism, steady state and time-resolved fluorescence and molecular dynamic calculations. The results show that, in the water medium, AmB self-associates to dimeric structures, referred to as "parallel" and "antiparallel". AmB dimers can further assemble into tetramers which can play a role of transmembrane ion channels, affecting electrophysiological homeostasis of a living cell. Understanding structural determinants of self-assembly of AmB opens a way to engineering preparations of the drug which retain pharmaceutical effectiveness under reduced toxicity.


Subject(s)
Amphotericin B/chemistry , Anti-Bacterial Agents/chemistry , Amphotericin B/metabolism , Anti-Bacterial Agents/metabolism , Circular Dichroism , Dimerization , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Liposomes/chemistry , Liposomes/metabolism , Microscopy, Fluorescence , Molecular Dynamics Simulation , Solvents/chemistry , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...