Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsia ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042520

ABSTRACT

Epilepsy has a peak incidence during the neonatal to early childhood period. These early onset epilepsies may be severe conditions frequently associated with comorbidities such as developmental deficits and intellectual disability and, in a significant percentage of patients, may be medication-resistant. The use of adult rodent models in the exploration of mechanisms and treatments for early life epilepsies is challenging, as it ignores significant age-specific developmental differences. More recently, models developed in immature animals, such as rodent pups, or in three-dimensional organoids may more closely model aspects of the immature brain and could result in more translatable findings. Although models are not perfect, they may offer a more controlled screening platform in studies of mechanisms and treatments, which cannot be done in pediatric patient cohorts. On the other hand, more simplified models with higher throughput capacities are required to deal with the large number of epilepsy candidate genes and the need for new treatment options. Therefore, a combination of different modeling approaches will be beneficial in addressing the unmet needs of pediatric epilepsy patients. In this review, we summarize the discussions on this topic that occurred during the XVI Workshop on Neurobiology of Epilepsy, organized in 2022 by the Neurobiology Commission of the International League Against Epilepsy. We provide an overview of selected models of early onset epilepsies, discussing their advantages and disadvantages. Heterologous expression models provide initial functional insights, and zebrafish, rodent models, and brain organoids present increasingly complex platforms for modeling and validating epilepsy-related phenomena. Together, these models offer valuable insights into early onset epilepsies and accelerate hypothesis generation and therapy discovery.

2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674629

ABSTRACT

Studies conducted on large populations show a lack of connection between vaccination and serious neurological symptoms. However, there are isolated cases that indicate such a relationship. These reports on adverse effects following immunization (AEFI) reduce social confidence in vaccination; however, their background may be rare genetic defects. The aim of the presented study was to examine if neurological AEFI in children may be associated with variants in genes related to neurodevelopment. To identify such possible associations, a descriptive study of the Polish case series was conducted. We performed next-generation sequencing in patients who, up to 4 weeks of injection of any vaccine, manifested neurological AEFI. We included 23 previously normally developing children with first seizures that occurred after vaccination. We identified pathogenic/likely pathogenic variants in genes engaged in neurodevelopment in nine patients and variants of uncertain significance in another nine patients. The mutated genes belonged to the group of genes related to epilepsy syndromes/epileptic encephalopathy. We showed that AEFI might have a genetic background. We hypothesized that in some AEFI patients, the vaccine might only trigger neurological symptoms that would have been manifested anyway as a result of a pathogenic variant in a gene engaged in neurodevelopment.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Vaccines , Humans , Child , Poland , Immunization , Vaccination/adverse effects , Vaccines/adverse effects , Drug-Related Side Effects and Adverse Reactions/etiology , Seizures/genetics , Seizures/chemically induced , Risk Factors , Adverse Drug Reaction Reporting Systems
3.
Cells ; 11(19)2022 10 04.
Article in English | MEDLINE | ID: mdl-36231081

ABSTRACT

Mutations in the SCN1A gene can cause a variety of phenotypes, ranging from mild forms, such as febrile seizures and generalized epilepsy with febrile seizures plus, to severe, such as Dravet and non-Dravet developmental epileptic encephalopathies. Until now, more than two thousand pathogenic variants of the SCN1A gene have been identified and different pathogenic mechanisms (loss vs. gain of function) described, but the precise molecular mechanisms responsible for the deficits exhibited by patients are not fully elucidated. Additionally, the phenotypic variability proves the involvement of other genetic factors in its final expression. This is the reason why animal models and cell line models used to explore the molecular pathology of SCN1A-related disorders are only of limited use. The results of studies based on such models cannot be directly translated to affected individuals because they do not address each patient's unique genetic background. The generation of functional neurons and glia for patient-derived iPSCs, together with the generation of isogenic controls using CRISPR/Cas technology, and finally, the 3D brain organoid models, seem to be a good way to solve this problem. Here, we review SCN1A-related encephalopathies, as well as the stem cell models used to explore their molecular basis.


Subject(s)
Brain Diseases , Epilepsies, Myoclonic , Induced Pluripotent Stem Cells , Seizures, Febrile , Animals , Brain Diseases/genetics , Brain Diseases/therapy , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/therapy , NAV1.1 Voltage-Gated Sodium Channel/genetics , Seizures, Febrile/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...