Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Small Methods ; 7(7): e2201545, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37075735

ABSTRACT

Light can be guided without diffraction in prefabricated structures: optical fibers and waveguides or in actively created spatial solitons in optically nonlinear media. Here, an approach in which a self-stabilized optical waveguide develops from a reservoir of building blocks-spherical polymer microparticles (MPs)-and is pushed through an optically passive medium-water-is presented. The optical waveguide, formed by a chain of these microparticles and one microsphere wide, is self-stabilized and propelled by the guided light, while its geometrical and dynamical properties depend on the diameter-to-wavelength ratio. The smallest investigated particles, 500 nm in diameter, form single-mode waveguides up to tens of micrometers long, with the length limited only by optical losses. In contrast, waveguides constructed of larger MPs, 1 and 2.5 µm in diameter, are limited in length to only a few particles due to interference of different modes and beating of light intensity.

2.
Polymers (Basel) ; 13(18)2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34578083

ABSTRACT

This article describes the random lasing (RL) phenomenon obtained in a dye-doped, polymeric double-phase system composed of PMMA and PVK polymers. It shows how relative concentrations between mentioned macromolecules can influence lasing parameters of the resulting blends, including obtained emission spectra and threshold conditions. We describe the influence of lasers' composition on their morphologies and link them with particular RL properties. Our studies reveal that the disorder caused by phase separation can support the RL phenomenon both in the waveguiding and quasi-waveguiding regimes. Changing the relative concentration of polymers enables one to switch between both regimes, which significantly influences threshold conditions, spectral shift, number of lasing modes, and ability to support extended and/or localized modes. Finally, we show that a simple phase separation technique can be used to fabricate efficient materials for RL. Moreover, it enables the tailoring of lasing properties of materials in a relatively wide range at the stage of the laser material fabrication process in a simple way. Therefore, this technique can be seen as a fast, cheap, and easy to perform way of random lasers fabrication.

3.
Adv Opt Mater ; 8(22): 2001039, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33365226

ABSTRACT

Lasers based on biological materials are attracting an increasing interest in view of their use in integrated and transient photonics. Deoxyribonucleic acid (DNA) as optical biopolymer in combination with highly emissive dyes has been reported to have excellent potential in this respect. However, achieving miniaturized lasing systems based on solid-state DNA shaped in different geometries to confine and enhance emission is still a challenge, and the physicochemical mechanisms originating fluorescence enhancement are not fully understood. Herein, a class of wavelength-tunable lasers based on DNA nanofibers is demonstrated, for which optical properties are highly controlled through the system morphology. A synergistic effect is highlighted at the basis of lasing action. Through a quantum chemical investigation, it is shown that the interaction of DNA with the encapsulated dye leads to hindered twisting and suppressed channels for the nonradiative decay. This is combined with effective waveguiding, optical gain, and tailored mode confinement to promote morphologically controlled lasing in DNA-based nanofibers. The results establish design rules for the development of bright and tunable nanolasers and optical networks based on DNA nanostructures.

4.
Light Sci Appl ; 9: 19, 2020.
Article in English | MEDLINE | ID: mdl-32128159

ABSTRACT

White lasers are becoming increasingly relevant in various fields since they exhibit unprecedented properties in terms of beam brightness and intensity modulation. Here we introduce a white laser based on a polymer matrix encompassing liquid crystals and multiple organic chromophores in a multifunctional phase-separation system. The separation of the hydrophilic matrix and the hydrophobic liquid crystals leads to the formation of a complex optically active layer, featuring lasing emission tuneable from blue to red. White laser emission is found with an optical excitation threshold of approximately 12 mJ/cm2. Importantly, an external electric field can be used to control the device emission intensity. White lasers with low-voltage (≤10 V) controllable emission might pave the way for a new generation of broadband light sources for analytical, computational, and communication applications.

5.
Nanomaterials (Basel) ; 9(8)2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31366091

ABSTRACT

A series of five excited-state intramolecular proton transfer (ESIPT) emitters based on a 2-(2'-hydroxyphenyl) benzoxazole (HBO) scaffold, functionalized with a mono-or bis-(trialkylsilyl) acetylene extended spacer are presented. Investigation of their photophysical properties in solution and in the solid-state in different matrix, along with ab initio calculations gave useful insights into their optical behavior. Random lasing studies were conducted on a series of PMMA doped thin films, showing the presence of stimulated emission above the threshold of pumping energy density (ρth ≈ 0.5-2.6 mJ cm-2). In this work, the similarity of four level laser systems is discussed in light of the ESIPT photocycle.

6.
Phys Chem Chem Phys ; 20(30): 19958-19963, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30022203

ABSTRACT

An original molecular fluorophore displaying single keto (K*) excited-state intramolecular proton transfer (ESIPT) emission is presented in this article. Substitution at the 3 and 5 positions of the phenol ring of a 2-(2'-hydroxyphenylbenzoxazole) (HBO) dye by triethylsilyl-ethynyl fragments leads to a drastic enhancement of fluorescence in the solution-state as compared to unsubstituted analogues. This intense fluorescence emission is also retained in a protic solvent like ethanol and in the solid-state as embedded in a potassium bromide pellet or as 1% doped in a poly(methyl methacrylate) (PMMA) film. The experimental optical properties were confirmed by ab initio calculations. Random lasing (RL) studies performed on this ESIPT emitter show the presence of stimulated emission occurring above the threshold level of pumping energy density (ρth ≈ 300 µJ cm-2) in the PMMA matrix. To the best of our knowledge, this study constitutes the first observation of RL based on ESIPT fluorescence.

7.
RSC Adv ; 8(43): 24175-24181, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-30713679

ABSTRACT

We present stacked organic lasing heterostructures made by different species of light-emitting electrospun fibers, each able to provide optical gain in a specific spectral region. A hierarchical architecture is obtained by conformable layers of fibers with disordered two-dimensional organization and three-dimensional compositional heterogeneity. Lasing polymer fibers are superimposed in layers, showing asymmetric optical behavior from the two sides of the organic heterostructure, and tailored and bichromatic stimulated emission depending on the excitation direction. A marginal role of energy acceptor molecules in determining quenching of high-energy donor species is evidenced by luminescence decay time measurements. These findings show that non-woven stacks of light-emitting electrospun fibers doped with different dyes exhibit critically-suppressed Förster resonance energy transfer, limited at joints between different fiber species. This leads to the obtaining of hybrid materials with mostly physically-separated acceptors and donors, thus largely preventing donor quenching and making it much easier to achieve simultaneous lasing from multiple spectral bands. Coherent backscattering experiments are also performed on the system, suggesting the onset of random lasing features. These new organic lasing systems might find application in microfluidic devices where flexible and bidirectional excitation sources are needed, optical sensors, and nanophotonics.

8.
Phys Chem Chem Phys ; 19(27): 18068-18075, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28671707

ABSTRACT

The spectral tuning range of dye lasers is closely associated with the gain profile provided by the utilized luminescent compound. Here, we present the results of studies aimed at broadening the wavelength tuning range in distributed feedback (DFB) lasers, made up of polymeric layers doped with a mixture of two complementary dyes. We have used the 3-(2,2-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP) luminescent dye, showing stimulated emission in its crystalline form, and the Rhodamine 700 (Rh700) laser dye, which is red-shifted in luminescence relative to DCNP, both doped into a poly(methyl methacrylate) (PMMA) host matrix. We have investigated the relationships between the additives' relative weight to weight ratios and their ability to exhibit a nonradiative energy transfer process that is inherent with a luminescence quenching of the shorter wavelength emitter, the so-called donor. This in turn directly reflects the efficiency of simultaneous utilization of both dyes' emission bands for lasing. By the proper engineering of the gain material composition, it was possible to broaden the DFB lasing tuning spectral range up to 125 nm, which is twice as much compared to the DCNP/PMMA material, i.e. without addition of Rh700. Finally, the presented results have shown that additional random feedback, which is detrimental to the DFB lasing, originating from the presence of DCNP crystals within the polymeric bulk, can be effectively suppressed by the superposition of a temporary DFB resonator.

9.
Biochemistry ; 56(22): 2762-2765, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28517926

ABSTRACT

Fluorescence spectroscopy is a common method for detecting amyloid fibrils in which organic fluorophores are used as markers that exhibit an increase in quantum yield upon binding. However, most of the dyes exhibit enhanced emission only when bound to mature fibrils, and significantly weaker signals are obtained in the presence of amyloid oligomers. In the concept of population inversion, a laser is used as an excitation source to keep the major fraction of molecules in the excited state to create the pathways for the occurrence of stimulated emission. In the case of the proteins, the conformational changes lead to the self-ordering and thus different light scattering conditions that can influence the optical signatures of the generated light. Using this methodology, we show it is possible to optically detect amyloid oligomers using commonly available staining dyes in which population inversion can be induced. The results indicate that rhodamine 6G molecules are complexed with oligomers, and using a laser-assisted methodology, weakly emissive states can be detected. Significant spectral red-shifting of rhodamine 6G dispersed with amyloid oligomers and a notable difference determined by comparison of spectra of the fibrils suggest the existence of specific dye aggregates around the oligomer binding sites. This approach can provide new insights into intermediate oligomer states that are believed to be responsible for toxic seeding in neurodegeneration diseases.


Subject(s)
Biopolymers/chemistry , Lasers , Muramidase/chemistry , Rhodamines/chemistry , Spectrometry, Fluorescence
10.
Opt Lett ; 40(7): 1552-5, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25831382

ABSTRACT

Here, we report on the realization of random lasing (RL) and distributed feedback (DFB) lasing in a layer of luminescent 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP) organic nonlinear optical dye that has been dispersed in a poly(methyl methacrylate) (PMMA) matrix. The RL phenomenon appears due to the presence of spontaneously formed micro- and nano-crystals of DCNP in the bulk of the PMMA during the sample preparation. DFB can be realized in an optical system by using degenerated two-wave mixing in the pumping beams. The period of the interference pattern can be easily changed by changing the intersection angle of the pumping beams, resulting in a real time, fully reversible method of DFB lasing emission tuning. Because of the two neighboring stimulated emission bands of DCNP, it is possible to tune the lasing wavelength over a long range of about 65 nm.

11.
ACS Nano ; 8(10): 10893-8, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25265371

ABSTRACT

Room-temperature nanoimprinted, DNA-based distributed feedback (DFB) laser operation at 605 nm is reported. The laser is made of a pure DNA host matrix doped with gain dyes. At high excitation densities, the emission of the untextured dye-doped DNA films is characterized by a broad emission peak with an overall line width of 12 nm and superimposed narrow peaks, characteristic of random lasing. Moreover, direct patterning of the DNA films is demonstrated with a resolution down to 100 nm, enabling the realization of both surface-emitting and edge-emitting DFB lasers with a typical line width of <0.3 nm. The resulting emission is polarized, with a ratio between the TE- and TM-polarized intensities exceeding 30. In addition, the nanopatterned devices dissolve in water within less than 2 min. These results demonstrate the possibility of realizing various physically transient nanophotonics and laser architectures, including random lasing and nanoimprinted devices, based on natural biopolymers.


Subject(s)
DNA/chemistry , Nanotechnology , Optics and Photonics
12.
J Phys Chem A ; 115(39): 10689-97, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21870835

ABSTRACT

Fluorescence of nonlinear optical organic single crystal of 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP) excited by a nonabsorbed light pulses from Q-switched Nd:YAG laser λ = 1064 nm as well as absorbed λ = 532 nm light is reported. Two mechanisms of two-photon excited fluorescence are considered: (i) direct two-photon excited fluorescence and (ii) single-photon excitation due to reabsorption of light generated in process of second harmonic generation (SHG) by the crystal due to its nonlinear optical properties. Strong anisotropy of fluorescence that has been observed is linked with uniaxial molecular alignment. Fluorescence decay profile shows two- exponential decay with lifetimes of emitting species of 3.7 and 5.6 ns at 293 K. The excitation and fluorescence spectra of the DCNP single crystal have been measured at 294 K and in function of temperature down to 77.4 K. The strong bathochromic shift of fluorescence spectrum in crystal with respect to fluorescence of DCNP molecule in solution is observed and interpreted with possible formation of molecular aggregates.


Subject(s)
Fluorescence , Photons , Pyrazoles/chemistry , Anisotropy , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...