Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Biosci (Landmark Ed) ; 28(6): 127, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37395034

ABSTRACT

BACKGROUND: Intrinsically disordered proteins and protein regions (IDPs/IDRs) are important in diverse biological processes. Lacking a stable secondary structure, they display an ensemble of conformations. One factor contributing to this conformational heterogeneity is the proline cis/trans isomerization. The knowledge and value of a given cis/trans proline ratio are paramount, as the different conformational states can be responsible for different biological functions. Nuclear Magnetic Resonance (NMR) spectroscopy is the only method to characterize the two co-existing isomers on an atomic level, and only a few works report on these data. METHODS: After collecting the available experimental literature findings, we conducted a statistical analysis regarding the influence of the neighboring amino acid types (i ± 4 regions) on forming a cis-Pro isomer. Based on this, several regularities were formulated. NMR spectroscopy was then used to define the cis-Pro content on model peptides and desired point mutations. RESULTS: Analysis of NMR spectra prove the dependence of the cis-Pro content on the type of the neighboring amino acid-with special attention on aromatic and positively charged sidechains. CONCLUSIONS: Our results may benefit the design of protein regions with a given cis-Pro content, and contribute to a better understanding of the roles and functions of IDPs.


Subject(s)
Intrinsically Disordered Proteins , Isomerism , Intrinsically Disordered Proteins/genetics , Proline/chemistry , Proline/metabolism , Peptides , Magnetic Resonance Spectroscopy , Protein Conformation
2.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36769017

ABSTRACT

Medicago truncatula in symbiosis with its rhizobial bacterium partner produces more than 700 nodule-specific cysteine-rich (NCR) peptides with diverse physicochemical properties. Most of the cationic NCR peptides have antimicrobial activity and the potential to tackle antimicrobial resistance with their novel modes of action. This work focuses on the antibacterial activity of the NCR169 peptide derivatives as we previously demonstrated that the C-terminal sequence of NCR169 (NCR169C17-38) has antifungal activity, affecting the viability, morphology, and biofilm formation of various Candida species. Here, we show that NCR169C17-38 and its various substituted derivatives are also able to kill ESKAPE pathogens such as Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. The replacement of the two cysteines with serines enhanced the antimicrobial activity against most of the tested bacteria, indicating that the formation of a disulfide bridge is not required. As tryptophan can play role in the interaction with bacterial membranes and thus in antibacterial activity, we replaced the tryptophans in the NCR169C17-38C12,17/S sequence with various modified tryptophans, namely 5-methyl tryptophan, 5-fluoro tryptophan, 6-fluoro tryptophan, 7-aza tryptophan, and 5-methoxy tryptophan, in the synthesis of NCR169C17-38C12,17/S analogs. The results demonstrate that the presence of modified fluorotryptophans can significantly enhance the antimicrobial activity without notable hemolytic effect, and this finding could be beneficial for the further development of new AMPs from the members of the NCR peptide family.


Subject(s)
Anti-Bacterial Agents , Tryptophan , Tryptophan/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Peptides/pharmacology , Bacteria , Staphylococcus aureus , Microbial Sensitivity Tests
3.
Article in English | MEDLINE | ID: mdl-36048499

ABSTRACT

We have previously published six esterified O-acyl (EFB1) and three N-acyl fumonisin B1 derivatives extracted from rice cultures inoculated with Fusarium verticillioides, amongst these the identification of N-palmitoyl-FB1 has been clearly established in a spiking experiment. At that time, it was assumed that as in the case of O-acyl-FB1 derivatives, linoleic-, oleic- or palmitic acid esterify through the OH group on the 3C or 5C atom of the carbon chain of the fumonisins. In our most recent experiments, we have synthetically acylated the FB1 toxin and subsequently purified 3-O-palmitoyl- and 5-O-palmitoyl-FB1 toxins in addition to the N-palmitoyl-FB1 toxin. They were identified and characterised using 1H and 13C NMR as well as LC-HRMS. Our aim was the identification of the previously detected O-acyl-FB1 derivatives over the course of a spiking experiment, which were obtained through the solid-phase fermentation of Fusarium verticillioides. By spiking the three synthesized and identified components one-by-one into the fungal culture extract and analysing these cultures using LC-MS, it was clearly demonstrated that the F. verticillioides strain produced both the 5-O-palmitoyl-FB1 and N-palmitoyl-FB1 toxins, but did not produce 3-O-palmitoyl-FB1. Thus, it is highly probable that the components thought to be 3-O-acyl-(linoleoyl-, oleoyl-, palmitoyl-) FB1 derivatives in our previous communication are presumably 10-O-acyl-FB1 derivatives. Since these acylated FB1 derivatives can occur naturally in e.g. maize, the use of these synthesized components as reference materials is of great importance in order to obtain accurate qualitative and quantitative data on the occurrence of acylated fumonisins in different matrices including maize based feed samples. The production of these substances has also made it possible to test their toxicity in cell culture and small animal experiments.


Subject(s)
Fumonisins , Fusarium , Animals , Carbon , Fumonisins/analysis , Fusarium/chemistry , Palmitic Acid/chemistry , Plant Extracts
4.
RSC Adv ; 12(37): 24278-24287, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36128537

ABSTRACT

The extracellular domain of the glucagon-like peptide-1 receptor, GLP-1R, is responsible for the binding of GLP-1, and a handful of additional agonists (such as exenatide, lixisenatide, and liraglutide) used daily for treating type II diabetes mellitus. Lead discovery and optimization, however, require binding studies, which, in turn, necessitate the total synthesis of GLP-1R, comprising 108 residues. A protein domain of 10-15 kDa size could be obtained either by expression in E. coli or by ligating solid-phase peptide synthesis (SPPS)-made fragments. However, direct overexpression fails to give a properly folded protein, as GLP-1R forms an inclusion body, which fails to refold due to improper disulfide pairing. Several bacterial strains, constructs, and fusion partners were probed and it was found that only co-expression with MBP gave a 3D-fold allowing the native disulfide bond pattern formation. Some fusion partners can act as covalently linked or in situ chaperones for guiding the refolding of GLP-1R toward success. Therefore, the bottleneck to preparing GPCR extracellular domains is the correct pairing of the Cys residues. As a proof-of-concept model, nGLP1-R was made by SPPS to form the purified full-length polypeptide chain, subjected to self-guided or spontaneous Cys pairing. However, the formation of correct SS-pairs was lagging behind any protocol in use support, and the bottleneck of large-scale protein production relies on the risky step of proper refolding, which is sometimes possible only if a suitable fusion partner effectively helps and catalysis of the correct disulfide formation.

5.
ACS Omega ; 6(50): 34470-34484, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34963932

ABSTRACT

The need for novel drug delivery peptides is an important issue of the modern pharmaceutical research. Here, we test K-rich peptides from plant dehydrin ERD14 (ERD-A, ERD-B, and ERD-C) and the C-terminal CPP-resembling region of S100A4 (S100) using the 5(6)-carboxyfluorescein (Cf) tag at the N-terminus. Via a combined pH-dependent NMR and fluorescence study, we analyze the effect of the Cf conjugation/modification on the structural behavior, separately investigating the (5)-Cf and (6)-Cf forms. Flow cytometry results show that all peptides internalize; however, there is a slight difference between the cellular internalization of (5)- and (6)-Cf-peptides. We indicate the possible importance of residues with an aromatic sidechain and proline. We prove that ERD-A localizes mostly in the cytosol, ERD-B and S100 have partial colocalization with lysosomal staining, and ERD-C mainly localizes within vesicle-like compartments, while the uptake mechanism mainly occurs through energy-dependent paths.

6.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915930

ABSTRACT

The increasing rate of fungal infections causes global problems not only in human healthcare but agriculture as well. To combat fungal pathogens limited numbers of antifungal agents are available therefore alternative drugs are needed. Antimicrobial peptides are potent candidates because of their broad activity spectrum and their diverse mode of actions. The model legume Medicago truncatula produces >700 nodule specific cysteine-rich (NCR) peptides in symbiosis and many of them have in vitro antimicrobial activities without considerable toxicity on human cells. In this work we demonstrate the anticandidal activity of the NCR335 and NCR169 peptide derivatives against five Candida species by using the micro-dilution method, measuring inhibition of biofilm formation with the XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay, and assessing the morphological change of dimorphic Candida species by microscopy. We show that both the N- and C-terminal regions of NCR335 possess anticandidal activity as well as the C-terminal sequence of NCR169. The active peptides inhibit biofilm formation and the yeast-hypha transformation. Combined treatment of C. auris with peptides and fluconazole revealed synergistic interactions and reduced 2-8-fold the minimal inhibitory concentrations. Our results demonstrate that shortening NCR peptides can even enhance and broaden their anticandidal activity and therapeutic potential.


Subject(s)
Antifungal Agents/chemical synthesis , Candida/drug effects , Medicago truncatula/chemistry , Pore Forming Cytotoxic Proteins/chemistry , Antifungal Agents/pharmacology , Biofilms/drug effects , Drug Synergism , Fluconazole , HaCaT Cells , Humans , Hyphae/drug effects , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/pharmacology
7.
Front Microbiol ; 11: 270, 2020.
Article in English | MEDLINE | ID: mdl-32153547

ABSTRACT

In Rhizobium-legume symbiosis, the bacteria are converted into nitrogen-fixing bacteroids. In many legume species, differentiation of the endosymbiotic bacteria is irreversible, culminating in definitive loss of their cell division ability. This terminal differentiation is mediated by plant peptides produced in the symbiotic cells. In Medicago truncatula more than ∼700 nodule-specific cysteine-rich (NCR) peptides are involved in this process. We have shown previously that NCR247 and NCR335 have strong antimicrobial activity on various pathogenic bacteria and identified interaction of NCR247 with many bacterial proteins, including FtsZ and several ribosomal proteins, which prevent bacterial cell division and protein synthesis. In this study we designed and synthetized various derivatives of NCR247, including shorter fragments and various chimeric derivatives. The antimicrobial activity of these peptides was tested on the ESKAPE bacteria; Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli as a member of Enterobacteriaceae and in addition Listeria monocytogenes and Salmonella enterica. The 12 amino acid long C-terminal half of NCR247, NCR247C partially retained the antimicrobial activity and preserved the multitarget interactions with partners of NCR247. Nevertheless NCR247C became ineffective on S. aureus, P. aeruginosa, and L. monocytogenes. The chimeric derivatives obtained by fusion of NCR247C with other peptide fragments and particularly with a truncated mastoparan sequence significantly increased bactericidal activity and altered the antimicrobial spectrum. The minimal bactericidal concentration of the most potent derivatives was 1.6 µM, which is remarkably lower than that of most classical antibiotics. The killing activity of the NCR247-based chimeric peptides was practically instant. Importantly, these peptides had no hemolytic activity or cytotoxicity on human cells. The properties of these NCR derivatives make them promising antimicrobials for clinical use.

8.
Chem Sci ; 7(4): 2666-2673, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-28660039

ABSTRACT

Anuroctoxin (AnTx), a 35-amino-acid scorpion toxin containing four disulfide bridges, is a high affinity blocker of the voltage-gated potassium channel Kv1.3, but also blocks Kv1.2. To improve potential therapeutic use of the toxin, we have designed a double substituted analog, [N17A/F32T]-AnTx, which showed comparable Kv1.3 affinity to the wild-type peptide, but also a 2500-fold increase in the selectivity for Kv1.3 over Kv1.2. In the present study we have achieved the chemical synthesis of a Sec-analog in which all cysteine (Cys) residues have been replaced by selenocysteine (Sec) forming four diselenide bonds. To the best of our knowledge this is the first time to replace, by chemical synthesis, all disulfide bonds with isosteric diselenides in a peptide/protein. Gratifyingly, the key pharmacological properties of the Sec-[N17A/F32T]-AnTx are retained since the peptide is functionally active. We also propose here a combined experimental and theoretical approach including NOE- and 77Se-based NMR supplemented by MD simulations for conformational and dynamic characterization of the Sec-[N17A/F32T]-AnTx. Using this combined approach allowed us to attain unequivocal assignment of all four diselenide bonds and supplemental MD simulations allowed characterization of the conformational dynamics around each disulfide/diselenide bridge.

9.
Langmuir ; 29(24): 7283-90, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23278633

ABSTRACT

The self-assembly of small molecular modules interacting through noncovalent forces is increasingly being used to generate functional structures and materials for electronic, catalytic, and biomedical applications. The greatest control over the geometry in H-bond supramolecular architectures, especially in H-bonded supramolecular polymers, can be achieved by exploiting the rich programmability of artificial nucleobases undergoing self-assembly through strong H bonds. Here N(3)-functionalized xanthine modules are described, which are capable of self-associating through self-complementary H-bonding patterns to form H-bonded supramolecular ribbons. The self-association of xanthines through directional H bonding between neighboring molecules allows the controlled generation of highly compact 1D supramolecular polymeric ribbons on graphite. These architectures have been characterized by scanning tunneling microscopy at the solid-liquid interface, corroborated by dispersion-corrected density functional theory (DFT) studies and X-ray diffraction.


Subject(s)
Xanthines/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Models, Theoretical
10.
Molecules ; 17(7): 8351-8, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22781445

ABSTRACT

Highly reactive glycosyl chlorides and bromides have been analysed by a routine mass spectrometric method using electrospray ionization and lithium salt adduct-forming agents in anhydrous acetonitrile solution, providing salient lithiated molecular ions [M+Li]⁺, [2M+Li]⁺ etc. The role of other adduct-forming salts has also been evaluated. The lithium salt method is useful for accurate mass determination of these highly sensitive compounds.


Subject(s)
Glycosides/chemistry , Halogens/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Calibration , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...