Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 89, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743903

ABSTRACT

Despite the international agreement to reduce global warming to below 2 °C, the Intended Nationally Determined Contributions submitted for the COP21 would lead to a global temperature rise of about 3 °C. The relative consequences of such a one-degree additional warming have not yet been investigated for regional air quality. Here we found that a + 3 °C global pollutant emission trajectory with respect to pre-industrial climate (reached along the 2040-2069 period under a RCP8.5 scenario) would significantly increase European ozone levels relative to a 2 °C one (reached along the 2028-2057 period under a RCP4.5 scenario). This increase is particularly high over industrial regions, large urban areas, and over Southern Europe and would annihilate the benefits of emission reduction policies. The regional ozone increase mainly stems from the advection of ozone at Europe's boundaries, themselves due to high global methane concentrations associated with the RCP8.5 emission scenario. These results make regional emission regulation, combined with emissions-reduction policies for global methane, of crucial importance.Current national pledges to reduce greenhouse gas emissions track to a temperature rise of about 3 °C. Here the authors use future projections to show that 3 °C warming under a business as usual scenario would result in large increases in ozone concentrations, off-setting any benefits from mitigation policies.


Subject(s)
Air Pollutants/analysis , Air Pollution/legislation & jurisprudence , Air Pollution/prevention & control , Global Warming , Vehicle Emissions/analysis , Vehicle Emissions/legislation & jurisprudence , Air Pollutants/metabolism , Europe , Global Warming/legislation & jurisprudence , Global Warming/prevention & control , Global Warming/statistics & numerical data , Ozone/analysis , Ozone/metabolism , Temperature , Vehicle Emissions/prevention & control
2.
Environ Monit Assess ; 185(1): 581-601, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22411028

ABSTRACT

The paper discusses ambient concentrations of PM(2.5) (ambient fine particles) and of 29 PM(2.5)-related elements in Zabrze and Katowice, Poland, in 2007. The elemental composition of PM(2.5) was determined using energy dispersive X-ray fluorescence (EDXRF). The mobility (cumulative percentage of the water-soluble and exchangeable fractions of an element in its total concentration) of 18 PM(2.5)-related elements in Zabrze and Katowice was computed by using sequential extraction and EDXRF combined into a simple method. The samples were extracted twice: in deionized water and in ammonium acetate. In general, the mobility and the concentrations of the majority of the elements were the same in both cities. S, Cl, K, Ca, Zn, Br, Ba, and Pb in both cities, Ti and Se in Katowice, and Sr in Zabrze had the mobility greater than 70%. Mobility of typical crustal elements, Al, Si, and Ti, because of high proportion of their exchangeable fractions in PM, was from 40 to 66%. Mobility of Fe and Cu was lower than 30%. Probable sources of PM(2.5) were determined by applying principal component analysis and multiple regression analysis and computing enrichment factors. Great part of PM(2.5) (78% in Katowice and 36% in Zabrze) originated from combustion of fuels in domestic furnaces (fossil fuels, biomass and wastes, etc.) and liquid fuels in car engines. Other identified sources were: power plants, soil, and roads in Zabrze and in Katowice an industrial source, probably a non-ferrous smelter or/and a steelwork, and power plants.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Particulate Matter/analysis , Air Movements , Particle Size , Poland , Principal Component Analysis , Regression Analysis
3.
Environ Sci Technol ; 40(11): 3586-94, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16786698

ABSTRACT

Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first (CLE) scenario reflects implementation of current air quality legislation around the world, while the second (MFR) represents a more optimistic case in which all currently feasible technologies are applied to achieve maximum emission reductions. We contrast these scenarios with the more pessimistic IPCC SRES A2 scenario. Ensemble simulations for the year 2000 are consistent among models and show a reasonable agreement with surface ozone, wet deposition, and NO2 satellite observations. Large parts of the world are currently exposed to high ozone concentrations and high deposition of nitrogen to ecosystems. By 2030, global surface ozone is calculated to increase globally by 1.5 +/- 1.2 ppb (CLE) and 4.3 +/- 2.2 ppb (A2), using the ensemble mean model results and associated +/-1 sigma standard deviations. Only the progressive MFR scenario will reduce ozone, by -2.3 +/- 1.1 ppb. Climate change is expected to modify surface ozone by -0.8 +/- 0.6 ppb, with larger decreases over sea than over land. Radiative forcing by ozone increases by 63 +/- 15 and 155 +/- 37 mW m(-2) for CLE and A2, respectively, and decreases by -45 +/- 15 mW m(-2) for MFR. We compute that at present 10.1% of the global natural terrestrial ecosystems are exposed to nitrogen deposition above a critical load of 1 g N m(-2) yr(-1). These percentages increase by 2030 to 15.8% (CLE), 10.5% (MFR), and 25% (A2). This study shows the importance of enforcing current worldwide air quality legislation and the major benefits of going further. Nonattainment of these air quality policy objectives, such as expressed by the SRES-A2 scenario, would further degrade the global atmospheric environment.


Subject(s)
Air Pollutants/analysis , Air Pollution/prevention & control , Atmosphere/analysis , Environmental Monitoring/methods , Animals , Ecology/methods , Ecology/trends , Ecosystem , Forecasting , Greenhouse Effect , Humans , Nitrogen/analysis , Ozone/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...