Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 409: 135264, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36571899

ABSTRACT

A novel bioactive polysaccharopeptide (C1) and polysaccharide (C2) with an average molecular weight of 180 kDa and 70 kDa were isolated from R. rugosa pseudofruit. The composition of the macromolecules was established using 1H NMR, FT-IR, GC-MS, SDS-PAGE coupled with enzymatic cleavage, and proteomic analyses (LC-MS). C1 was found to contain 60.56 ± 1.82 % of sugars and 21.17 ± 0.47 % of uronic acids. Its main neutral monosaccharides were arabinose, rhamnose, galactose, glucose, fucose, and mannose. C1 was found to be a polysaccharopeptide containing pectinesterase-like protein. C2 was composed of 32.85 ± 0.97 % of sugars and 48.77 ± 1.15 % of uronic acids. Its main neutral monosaccharides were galactose, glucose, rhamnose, arabinose, and mannose. A promising nutraceutical value of the polysaccharides was revealed. Assays showed strong α-glucosidase inhibitory activity of both macromolecules and considerable antiradical potential and moderate lipoxygenase inhibitory activity of the crude polysaccharide. Moreover, antiproliferative activity of C2 was observed.


Subject(s)
Galactose , Rosa , Rhamnose , Rosa/chemistry , Mannose , Arabinose , Spectroscopy, Fourier Transform Infrared , Proteomics , Monosaccharides/chemistry , Glucose , Polysaccharides/chemistry , Dietary Supplements , Uronic Acids/chemistry , Peptides/pharmacology
2.
Carbohydr Res ; 522: 108696, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36335652

ABSTRACT

Soft rot and blackleg diseases, caused by pectinolytic bacteria from the numerous species of Dickeya and Pectobacterium, pose a serious threat to the world potato production. Besides, infections triggered by these pectinolytic bacteria lead to huge economic losses in the cultivation of other crops, vegetables, and ornamentals. Strains belonging to the genus Pectobacterium tend to be isolated from various environments such as rotten or asymptomatic plants, weeds, soil or water. The main virulence factors of these phytopathogenic bacteria involve plant cell wall degrading enzymes (PCWDEs) i.e. pectinases, cellulases and proteases. Among accessory virulence factors, there is often lipopolysaccharide (LPS) listed. This constituent of the external part of bacterial cell wall contains lipid A, inner and outer core in addition to O-polysaccharide (OPS). LPS plays an important role in plant-microbe interactions, in particular during the first step of pathogen recognition. In this study we present the chemical structure of OPS of the first Pectobacterium aquaticum strain (IFB5637) isolated from water in Poland. The OPS consists of two common hexoses, such as mannose and glucose, as well as an abequose (3,6-dideoxy-d-xylo-hexose), the first 3,6-dideoxyhexose identified among the Pectobacteriaceae family: According to our best knowledge this is the first determined structure of the OPS of P. aquaticum.


Subject(s)
Pectobacterium , Solanum tuberosum , Lipopolysaccharides , Plant Diseases/microbiology , Hexoses , Solanum tuberosum/microbiology , Virulence Factors , Water
3.
Nutrients ; 13(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419097

ABSTRACT

The aim of the present study was to evaluate in vitro the beneficial potential of crude polysaccharides from S. crispa (CPS) in one of the most common cancer types-colon cancer. The determination of the chemical composition of CPS has revealed that it contains mostly carbohydrates, while proteins or phenolics are present only in trace amounts. 1H NMR and GC-MS methods were used for the structural analysis of CPS. Biological activity including anticancer, anti-inflammatory and antioxidant properties of CPS was investigated. CPS was found to be non-toxic to normal human colon epithelial CCD841 CoN cells. Simultaneously, they destroyed membrane integrity as well as inhibited the proliferation of human colon cancer cell lines: Caco-2, LS180 and HT-29. Antioxidant activity was determined by various methods and revealed the moderate potential of CPS. The enzymatic assays revealed no influence of CPS on xanthine oxidase and the inhibition of catalase activity. Moreover, pro-inflammatory enzymes such as cyclooxygenase-2 or lipooxygenase were inhibited by CPS. Therefore, it may be suggested that S. crispa is a valuable part of the regular human diet, which may contribute to a reduction in the risk of colon cancer, and possess promising activities encouraging further studies regarding its potential use as chemopreventive and therapeutic agent in more invasive stages of this type of cancer.


Subject(s)
Colonic Neoplasms/prevention & control , Polyporales/metabolism , Polysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Caco-2 Cells , Carbohydrates , Colon , Glucans/metabolism , HT29 Cells , Humans , Lipoxygenase , Prostaglandin-Endoperoxide Synthases
4.
Carbohydr Res ; 497: 108135, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32911204

ABSTRACT

The species Dickeya aquatica was established in 2014 after the genomic characterization of the pectinolytic bacteria isolated from water. It was demonstrated that D. aquatica was able to cause symptoms of soft rot on the fruit of tomato and cucumber. According to earlier works, lipopolysaccharides are regarded as an important virulence factor of Pectobacteriaceae. An O-specific polysaccharide containing d-Fuc and l-Rha was obtained by mild acid hydrolysis of the lipopolysaccharide of D. aquatica IFB0154 (strain Dw044 isolated in Finland). By means of compositional analyses and NMR spectroscopy, the chemical repeating unit of the polymer was identified as a linear disaccharide of the structure shown below. The rhamnose residue was partially acetylated at O-2 or O-3. OAc (~40%) ↓2 →3)-α-d-Fucp-(1 â†’ 4)-α-l-Rhap-(1→ ↑3 OAc (~30%) The O-polysaccharides isolated from Dickeya dianthicola IFB0485 and Dickeya zeae IPO946 have a different structure, identical to that previously described for several strains of Dickeya solani and Dickeya dadantii 3937.


Subject(s)
Dickeya/chemistry , O Antigens/chemistry , Carbohydrate Sequence , O Antigens/isolation & purification , Species Specificity
5.
Carbohydr Res ; 497: 108136, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32889436

ABSTRACT

The bacteria from Ochrobactrum genus are commonly found in the soil and association with the roots of plants. The O-polysaccharide and the glucan were isolated from the Ochrobactrum rhizosphaerae PR17T strain. Purified polysaccharides were analysed using chemical methods and NMR spectroscopy. Sugar and absolute configuration assignment combined with NMR data revealed the chemical structure of the repeating unit of the O.


Subject(s)
O Antigens/chemistry , Ochrobactrum/chemistry , Carbohydrate Conformation , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...