Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055276

ABSTRACT

The synthesis and characterization of multicolor light-emitting nanomaterials based on rare earths (RE3+) are of great importance due to their possible use in optoelectronic devices, such as LEDs or displays. In the present work, oxyfluoride glass-ceramics containing BaF2 nanocrystals co-doped with Tb3+, Eu3+ ions were fabricated from amorphous xerogels at 350 °C. The analysis of the thermal behavior of fabricated xerogels was performed using TG/DSC measurements (thermogravimetry (TG), differential scanning calorimetry (DSC)). The crystallization of BaF2 phase at the nanoscale was confirmed by X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM), and the changes in silicate sol-gel host were determined by attenuated total reflectance infrared (ATR-IR) spectroscopy. The luminescent characterization of prepared sol-gel materials was carried out by excitation and emission spectra along with decay analysis from the 5D4 level of Tb3+. As a result, the visible light according to the electronic transitions of Tb3+ (5D4 → 7FJ (J = 6-3)) and Eu3+ (5D0 → 7FJ (J = 0-4)) was recorded. It was also observed that co-doping with Eu3+ caused the shortening in decay times of the 5D4 state from 1.11 ms to 0.88 ms (for xerogels) and from 6.56 ms to 4.06 ms (for glass-ceramics). Thus, based on lifetime values, the Tb3+/Eu3+ energy transfer (ET) efficiencies were estimated to be almost 21% for xerogels and 38% for nano-glass-ceramics. Therefore, such materials could be successfully predisposed for laser technologies, spectral converters, and three-dimensional displays.

2.
Materials (Basel) ; 14(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562698

ABSTRACT

In this work, the series of Tb3+/Eu3+ co-doped xerogels and derivative glass-ceramics containing CaF2 nanocrystals were prepared and characterized. The in situ formation of fluoride crystals was verified by an X-ray diffraction technique (XRD) and transmission electron microscopy (TEM). The studies of the Tb3+/Eu3+ energy transfer (ET) process were performed based on excitation and emission spectra along with luminescence decay analysis. According to emission spectra recorded under near-ultraviolet (NUV) excitation (351 nm, 7F6 → 5L9 transition of Tb3+), the mutual coexistence of the 5D4 → 7FJ (J = 6-3) (Tb3+) and the 5D0 → 7FJ (J = 0-4) (Eu3+) luminescence bands was clearly observed. The co-doping also resulted in gradual shortening of a lifetime from the 5D4 state of Tb3+ ions, and the ET efficiencies were varied from ηET = 11.9% (Tb3+:Eu3+ = 1:0.5) to ηET = 22.9% (Tb3+:Eu3+ = 1:2) for xerogels, and from ηET = 25.7% (Tb3+:Eu3+ = 1:0.5) up to ηET = 67.4% (Tb3+:Eu3+ = 1:2) for glass-ceramics. Performed decay analysis from the 5D0 (Eu3+) and the 5D4 (Tb3+) state revealed a correlation with the change in Tb3+-Eu3+ and Eu3+-Eu3+ interionic distances resulting from both the variable Tb3+:Eu3+ molar ratio and their partial segregation in CaF2 nanophase.

3.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498202

ABSTRACT

In this work, we performed a systematic analysis of the impact of selected chemical reagents used in sol-gel synthesis (i.e., N,N-dimethylformamide) and different catalyst agents (i.e., CH3COOH, HNO3) on the formation and luminescence of Eu3+-doped SiO2-LaF3 nano-glass-ceramics. Due to the characteristic nature of intra-configurational electronic transitions of Eu3+ ions within the 4f6 manifold (5D0 → 7FJ, J = 0-4), they are frequently used as a spectral probe. Thus, the changes in the photoluminescence profile of Eu3+ ions could identify the general tendency of rare earth materials to segregate inside low-phonon energy fluoride nanocrystals, which allows us to assess their application potential in optoelectronics. Fabricated sol-gel materials, from sols to gels and xerogels to nano-glass-ceramics, were examined using several experimental techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectroscopy (IR), and luminescence measurements. It was found that the distribution of Eu3+ ions between the amorphous silicate sol-gel host and LaF3 nanocrystals is strictly dependent on the initial composition of the obtained sols, and the lack of N,N-dimethylformamide significantly promotes the segregation of Eu3+ ions inside LaF3 nanocrystals. As a result, we detected long-lived luminescence from the 5D0 excited state equal to 6.21 ms, which predisposes the obtained glass-ceramic material for use as an optical element in reddish-orange emitting devices.


Subject(s)
Ceramics/chemistry , Europium/chemistry , Fluorides/chemistry , Glass/chemistry , Lanthanum/chemistry , Nanoparticles/chemistry , Catalysis , Gels/chemistry , Silicon Dioxide/chemistry
4.
Materials (Basel) ; 13(11)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492852

ABSTRACT

In the present work, the Tb3+/Eu3+ co-activated sol-gel glass-ceramic materials (GCs) containing MF3 (M = Y, La) nanocrystals were fabricated during controlled heat-treatment of silicate xerogels at 350 °C. The studies of Tb3+ → Eu3+ energy transfer process (ET) were performed by excitation and emission spectra along with luminescence decay analysis. The co-activated xerogels and GCs exhibit multicolor emission originated from 4fn-4fn optical transitions of Tb3+ (5D4 → 7FJ, J = 6-3) as well as Eu3+ ions (5D0 → 7FJ, J = 0-4). Based on recorded decay curves, it was found that there is a significant prolongation in luminescence lifetimes of the 5D4 (Tb3+) and the 5D0 (Eu3+) levels after the controlled heat-treatment of xerogels. Moreover, for both types of prepared GCs, an increase in ET efficiency was also observed (from ηET ≈ 16% for xerogels up to ηET = 37.3% for SiO2-YF3 GCs and ηET = 60.8% for SiO2-LaF3 GCs). The changes in photoluminescence behavior of rare-earth (RE3+) dopants clearly evidenced their partial segregation inside low-phonon energy fluoride environment. The obtained results suggest that prepared SiO2-MF3:Tb3+, Eu3+ GC materials could be considered for use as optical elements in RGB-lighting optoelectronic devices operating under near-ultraviolet (NUV) excitation.

5.
Materials (Basel) ; 12(22)2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31766107

ABSTRACT

Nanocrystalline transparent BaF2:Eu3+ glass-ceramic materials emitting reddish-orange light were fabricated using a low-temperature sol-gel method. Several experimental techniques were used to verify structural transformation from precursor xerogels to sol-gel glass-ceramic materials containing fluoride nanocrystals. Thermal degradation of xerogels was analyzed by thermogravimetric analysis (TG) and differential scanning calorimetry method (DSC). The presence of BaF2 nanocrystals dispersed in sol-gel materials was confirmed by the X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). In order to detect structural changes in silica network during annealing process, the infrared spectroscopy (IR-ATR) was carried out. In particular, luminescence spectra of Eu3+ and their decays were examined in detail. Some spectroscopic parameters of Eu3+ ions in glass-ceramics containing BaF2 nanocrystals were determined and compared to the values obtained for precursor xerogels. It was observed, that the intensities of two main red and orange emission bands corresponding to the 5D0→7F2 electric-dipole transition (ED) and the 5D0→7F1 magnetic-dipole (MD) transition are changed significantly during transformation from xerogels to nanocrystalline BaF2:Eu3+ glass-ceramic materials. The luminescence decay analysis clearly indicates that the measured lifetime 5D0 (Eu3+) considerably enhanced in nanocrystalline BaF2:Eu3+ glass-ceramic materials compared to precursor xerogels. The evident changes in luminescence spectra and their decays suggest the successful migration of Eu3+ ions from amorphous silica network to low-phonon BaF2 nanocrystals.

6.
Opt Lett ; 39(11): 3181-4, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24876007

ABSTRACT

GdF3 nanocrystals doped with Eu3+ ions in oxyfluoride glass ceramics were prepared by a solgel method. The structural properties were examined by x-ray diffraction measurements. The effects of gadolinium codoping on europium emission in the prepared solgel glasses and glass ceramics have been studied. The emission bands originating from the 5D0 state of Eu3+ ions are enhanced under excitation of Gd3+ ions by 273 nm line. The electric dipole 5D0→7F2 transitions were dominant in the samples before heat treatment, whereas magnetic dipole 5D0→7F1 transitions had a higher probability in the samples after annealing. The luminescence lifetime for the 5D0 level of Eu3+ ions in the samples after excitation at 273 nm is long lived in comparison to excitation at 393 nm and increased to 190%. Energy transfer from Gd3+ to Eu3+ was observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...