Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293434

ABSTRACT

The reduction of O2 in respiratory cytochrome c oxidases (CcO) is associated with the generation of the transmembrane proton gradient by two mechanisms. In one of them, the proton pumping, two different types of the ferryl intermediates of the catalytic heme a3-CuB center P and F forms, participate. Equivalent ferryl states can be also formed by the reaction of the oxidized CcO (O) with H2O2. Interestingly, in acidic solutions a single molecule of H2O2 can generate from the O an additional F-type ferryl form (F•) that should contain, in contrast to the catalytic F intermediate, a free radical at the heme a3-CuB center. In this work, the formation and the endogenous decay of both the ferryl iron of heme a3 and the radical in F• intermediate were examined by the combination of four experimental approaches, isothermal titration calorimetry, electron paramagnetic resonance, and electronic absorption spectroscopy together with the reduction of this form by the defined number of electrons. The results are consistent with the generation of radicals in F• form. However, the radical at the catalytic center is more rapidly quenched than the accompanying ferryl state of heme a3, very likely by the intrinsic oxidation of the enzyme itself.


Subject(s)
Electron Transport Complex IV , Peroxides , Cattle , Animals , Electron Transport Complex IV/metabolism , Peroxides/chemistry , Protons , Hydrogen Peroxide/chemistry , Cytochromes c , Oxidation-Reduction , Heme/metabolism
2.
Biochim Biophys Acta Bioenerg ; 1861(9): 148237, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32485159

ABSTRACT

Cytochrome a was suggested as the key redox center in the proton pumping process of bovine cytochrome c oxidase (CcO). Recent studies showed that both the structure of heme a and its immediate vicinity are sensitive to the ligation and the redox state of the distant catalytic center composed of iron of cytochrome a3 (Fea3) and copper (CuB). Here, the influence of the ligation at the oxidized Fea33+-CuB2+ center on the electron-proton coupling at heme a was examined in the wide pH range (6.5-11). The strength of the coupling was evaluated by the determination of pH dependence of the midpoint potential of heme a (Em(a)) for the cyanide (the low-spin Fea33+) and the formate-ligated CcO (the high-spin Fea33+). The measurements were performed under experimental conditions when other three redox centers of CcO are oxidized. Two slightly differing linear pH dependencies of Em(a) were found for the CN- and the formate-ligated CcO with slopes of -13 mV/pH unit and -23 mV/pH unit, respectively. These linear dependencies indicate only a weak and unspecific electron-proton coupling at cytochrome a in both forms of CcO. The lack of the strong electron-proton coupling at the physiological pH values is also substantiated by the UV-Vis absorption and electron-paramagnetic resonance spectroscopy investigations of the cyanide-ligated oxidized CcO. It is shown that the ligand exchange at Fea3+ between His-Fea3+-His and His-Fea3+-OH- occurs only at pH above 9.5 with the estimated pK >11.0.


Subject(s)
Catalytic Domain , Cytochromes a/metabolism , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/metabolism , Protons , Animals , Biocatalysis , Cattle , Electron Transport , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...