Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Org Biomol Chem ; 21(25): 5297-5304, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37318371

ABSTRACT

A one-pot synthesis of 2,4-disubstituted quinazoline derivatives from halofluorobenzenes with nitriles was reported, via sequential nucleophilic addition and SNAr reaction. The advantages of the present approach are transition metal free, easy to operate, and all the starting materials are commercially available.

2.
Nature ; 523(7558): 111-4, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-25985179

ABSTRACT

Phosphofructokinase-1 (PFK1), the 'gatekeeper' of glycolysis, catalyses the committed step of the glycolytic pathway by converting fructose-6-phosphate to fructose-1,6-bisphosphate. Allosteric activation and inhibition of PFK1 by over ten metabolites and in response to hormonal signalling fine-tune glycolytic flux to meet energy requirements. Mutations inhibiting PFK1 activity cause glycogen storage disease type VII, also known as Tarui disease, and mice deficient in muscle PFK1 have decreased fat stores. Additionally, PFK1 is proposed to have important roles in metabolic reprogramming in cancer. Despite its critical role in glucose flux, the biologically relevant crystal structure of the mammalian PFK1 tetramer has not been determined. Here we report the first structures of the mammalian PFK1 tetramer, for the human platelet isoform (PFKP), in complex with ATP-Mg(2+) and ADP at 3.1 and 3.4 Å, respectively. The structures reveal substantial conformational changes in the enzyme upon nucleotide hydrolysis as well as a unique tetramer interface. Mutations of residues in this interface can affect tetramer formation, enzyme catalysis and regulation, indicating the functional importance of the tetramer. With altered glycolytic flux being a hallmark of cancers, these new structures allow a molecular understanding of the functional consequences of somatic PFK1 mutations identified in human cancers. We characterize three of these mutations and show they have distinct effects on allosteric regulation of PFKP activity and lactate production. The PFKP structural blueprint for somatic mutations as well as the catalytic site can guide therapeutic targeting of PFK1 activity to control dysregulated glycolysis in disease.


Subject(s)
Models, Molecular , Neoplasms/enzymology , Phosphofructokinase-1/chemistry , Phosphofructokinase-1/genetics , Enzyme Activation , Humans , Microscopy, Electron, Transmission , Mutation/genetics , Neoplasms/genetics , Phosphofructokinase-1/ultrastructure , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...