Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 27(45): 455102, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26465204

ABSTRACT

The temperature dependence of the dynamic structure factor at next-neighbour distances has been investigated for liquid aluminium. This correlation function is a sensitive parameter for changes in the local environment and its Fourier transform was measured in a coherent inelastic neutron scattering experiment. The zero frequency amplitude decreases in a nonlinear way and indicates a change in dynamics around 1.4 ∙ Tmelting. From that amplitude a generalized viscosity can be derived which is a measure of local stress correlations on next-neighbour distances. The derived generalized longitudinal viscosity shows a changing slope at the same temperature range. At this temperature the freezing out of degrees of freedom for structural relaxation upon cooling sets in which can be understood as a precursor towards the solid state. That crossover in dynamics of liquid aluminium shows the same signatures as previously observed in liquid rubidium and lead, indicating an universal character.

2.
Article in English | MEDLINE | ID: mdl-26274162

ABSTRACT

Inelastic neutron scattering was applied to measure the acoustic-type excitations in the molten alkali halide rubidium bromide. For molten RbBr neutron scattering is mainly sensitive to the number density fluctuation spectrum and is not influenced by charge fluctuations. Utilizing a dedicated Brillouin scattering spectrometer, we focused on the small-wave-vector range. From inelastic excitations in the spectra a dispersion relation was obtained, which shows a large positive dispersion effect. This frequency enhancement is related to a viscoelastic response of the liquid at high frequencies. Towards small wave vectors we identify the transition to hydrodynamic behavior. This observation is supported by a transition of the sound velocity from a viscoelastic enhanced value to the adiabatic speed of sound for the acoustic-type excitations. Furthermore, the spectrum transforms into a line shape compatible with a prediction from hydrodynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...