Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(1): 151-162, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38117683

ABSTRACT

Rational design of organic building blocks provides opportunities to control and tune various physicochemical properties of metal-organic frameworks (MOFs), including gas handling, proton conduction, and structural flexibility, the latter of which is responsible for new adsorption phenomena and often superior properties compared to rigid porous materials. In this work, we report synthesis, crystal structures, gas adsorption, and proton conduction for a flexible two-dimensional cadmium-based MOF (JUK-13-SO3H-SO2) containing a new sulfonated 4,4'-oxybis(benzoate) linker with a blocking SO2 bridge. This two-dimensional (2D) MOF is compared in detail with a previously reported three-dimensional Cd-MOF (JUK-13-SO3H), based on analogous, but nonflat, SO2-free sulfonated dicarboxylate. The comprehensive structure-property relationships and the detailed comparisons with insights into the networks flexibility are supported by five guest-dependent structures determined by single-crystal X-ray diffraction (XRD), and corroborated by spectroscopy (IR, 1H NMR), powder XRD, and elemental/thermogravimetric analyses, as well as by volumetric adsorption measurements (for N2, CO2, H2O), ideal adsorbed solution theory (IAST), density-functional theory (DFT+D) quantum chemical and grand-canonical Monte Carlo (GCMC) calculations, and electrochemical impedance spectroscopy (EIS) studies. Whereas both dynamic MOFs show moderate proton conductivity values, they exhibit excellent CO2/N2 selectivity related to the capture of CO2 from flue gases (IAST coefficients for 15:85 mixtures are equal to ca. 250 at 1 bar and 298 K). The presence of terminal sulfonate groups in both MOFs, introduced using a unique prechlorosulfonation strategy, is responsible for their hydrophilicity and water-assisted proton transport ability. The dynamic nature of the MOFs results in the appearance of breathing-type adsorption isotherms that exhibit large hysteresis loops (for CO2 and H2O) attributed to strong host-guest interactions. Theoretical modeling provides information about the adsorption mechanism and supports interpretation of experimental CO2 adsorption isotherms.

2.
ACS Appl Mater Interfaces ; 15(23): 28184-28192, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37265204

ABSTRACT

Intentionally introduced defects into solid materials create opportunities to control and tune their diverse physicochemical properties. Despite the growing interest in defect-engineered metal-organic frameworks (MOFs), there are still only a handful of studies on defective proton-conducting MOFs, including no reports on two-dimensional ones. Ion-conducting materials are fundamentally of great importance to the development of energy storage and conversion devices, including fuel cells and batteries. In this work, we demonstrate the introduction of missing-linker defects into a sulfonated proton conductive 2D zirconium-based MOF (JUK-14), using a facile post-synthetic approach and compare the stability and performance of the resulting materials, including proton conductivity, as well as adsorption of N2, CO2, and H2O molecules. We also discuss the associated presence of interlayer counterions and their effect on the properties and stability. Our approach to defect engineering can be extended to other layered MOFs and used for tuning their activity.

3.
Chemistry ; 28(37): e202200835, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35510822

ABSTRACT

By using the strategy of pre-assembly chlorosulfonation applied to a linker precursor, the first sulfonated zirconium metal-organic framework (JUK-14) with two-dimensional (2D) structure, was synthesized. Single-crystal X-ray diffraction reveals that the material is built of Zr6 O4 (OH)4 (COO)8 oxoclusters, doubly 4-connected by angular dicarboxylates, and stacked in layers spaced 1.5 nm apart by the presence of sulfonic groups. JUK-14 exhibits excellent hydrothermal stability, permanent porosity confirmed by gas adsorption studies, and shows high (>10-4  S/cm) and low (<10-8  S/cm) proton conductivity under humidified and anhydrous conditions, respectively. Post-synthesis inclusion of imidazole improves the overall conductivity increasing it to 1.7×10-3  S/cm at 60 °C and 90 % relative humidity, and by 3 orders of magnitude at 160 °C. The combination of 2D porous nature with robustness of zirconium MOFs offers new opportunities for exploration of the material towards energy and environmental applications.

4.
Materials (Basel) ; 15(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35057298

ABSTRACT

A solid-contact ion-selective electrode was developed for detecting potassium in environmental water. Two versions of a stable cadmium acylhydrazone-based metal organic framework, i.e., JUK-13 and JUK-13_H2O, were used for the construction of the mediation layer. The potentiometric and electrochemical characterizations of the proposed electrodes were carried out. The implementation of the JUK-13_H2O interlayer is shown to improve the potentiometric response and stability of measured potential. The electrode exhibits a good Nernstian slope (56.30 mV/decade) in the concentration range from 10-5 to 10-1 mol L-1 with a detection limit of 2.1 µmol L-1. The long-term potential stability shows a small drift of 0.32 mV h-1 over 67 h. The electrode displays a good selectivity comparable to ion-selective electrodes with the same membrane. The K-JUK-13_H2O-ISE was successfully applied for the determination of potassium in three certified reference materials of environmental water with great precision (RSD < 3.00%) and accuracy (RE < 3.00%).

5.
Inorg Chem ; 59(15): 10717-10726, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32663400

ABSTRACT

Four new layered flexible metal-organic frameworks (MOFs) containing a diacylhydrazone moiety, namely, guest-filled [Zn2(iso)2(tdih)2]n (1), [Zn2(NH2iso)2(tdih)2]n (2), [Cd2(iso)2(tdih)2]n (3) and [Cd2(NH2iso)2(tdih)2]n (4) were synthesized using terephthalaldehyde di-isonicotinoylhydrazone (tdih) as a linear ditopic linker as well as isophtalate (iso) or 5-aminoisophthalate (NH2iso) as angular colinkers. The MOFs with hexacoordinated cadmium centers feature two-dimensional pore systems as compared to the MOFs with pentacoordinated zinc centers showing either zero-dimensional or mixed zero-/one-dimensional voids, as evidenced by single-crystal X-ray diffraction. In contrast to the frameworks based on isophtalates which do not show any significant gas uptakes, introduction of amino-substituted linker enables CO2 adsorption. Gently activated aminoisophthalate-based frameworks, that is, guest-exchanged in methanol and heated to 100 °C, show reversible gated CO2 adsorptions at 195 K, whereas the increase of activation temperature to 150 °C or more leads to one-step isotherms and lower adsorption capacities. X-ray diffraction and IR spectroscopy reveal significant structural differences in interlayer hydrogen bonding upon activation of materials at higher temperatures. The work emphasizes the role of hydrogen bonds in crystal engineering of layered materials and the importance of activation conditions in such systems.

6.
Dalton Trans ; 49(29): 9953-9956, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32667381

ABSTRACT

Terminal sulfonic acid groups characterize various proton conducting materials including metal-organic frameworks (MOFs). These groups, however, show strong coordination ability that hinders their direct intact incorporation. We present a strategy for introducing pendant SO3H groups into frameworks from sulfonyl chloride precursors. The strategy using concerted deprotonation-metalation-hydrolysis reaction yields a new MOF capable of proton transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...