Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445789

ABSTRACT

Recent findings qualified aldehydes as potential biomarkers for disease diagnosis. One of the possibilities is to use electrochemical biosensors in point-of-care (PoC), but these need further development to overcome some limitations. Currently, the primary goal is to enhance their metrological parameters in terms of sensitivity and selectivity. Previous findings indicate that peptide OBPP4 (KLLFDSLTDLKKKMSEC-NH2) is a promising candidate for further development of aldehyde-sensitive biosensors. To increase the affinity of a receptor layer to long-chain aldehydes, a structure stabilization of the peptide active site via the incorporation of different linkers was studied. Indeed, the incorporation of linkers improved sensitivity to and binding of aldehydes in comparison to that of the original peptide-based biosensor. The tendency to adopt disordered structures was diminished owing to the implementation of suitable linkers. Therefore, to improve the metrological characteristics of peptide-based piezoelectric biosensors, linkers were added at the C-terminus of OBPP4 peptide (KLLFDSLTDLKKKMSE-linker-C-NH2). Those linkers consist of proteinogenic amino acids from group one: glycine, L-proline, L-serine, and non proteinogenic amino acids from group two: ß-alanine, 4-aminobutyric acid, and 6-aminohexanoic acid. Linkers were evaluated with in silico studies, followed by experimental verification. All studied linkers enhanced the detection of aldehydes in the gas phase. The highest difference in frequency (60 Hz, nonanal) was observed between original peptide-based biosensors and ones based on peptides modified with the GSGSGS linker. It allowed evaluation of the limit of detection for nonanal at the level of 2 ppm, which is nine times lower than that of the original peptide. The highest sensitivity values were also obtained for the GSGSGS linker: 0.3312, 0.4281, and 0.4676 Hz/ppm for pentanal, octanal, and nonanal, respectively. An order of magnitude increase in sensitivity was observed for the six linkers used. Generally, the linker's rigidity and the number of amino acid residues are much more essential for biosensors' metrological characteristics than the amino acid sequence itself. It was found that the longer the linkers, the better the effect on docking efficiency.


Subject(s)
Biosensing Techniques , Peptides , Peptides/chemistry , Aldehydes/chemistry , Amino Acids/chemistry
2.
Molecules ; 27(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35807428

ABSTRACT

This article presents a new way to determine odor nuisance based on the proposed odor air quality index (OAQII), using an instrumental method. This indicator relates the most important odor features, such as intensity, hedonic tone and odor concentration. The research was conducted at the compost screening yard of the municipal treatment plant in Central Poland, on which a self-constructed gas sensor array was placed. It consisted of five commercially available gas sensors: three metal oxide semiconductor (MOS) chemical sensors and two electrochemical ones. To calibrate and validate the matrix, odor concentrations were determined within the composting yard using the field olfactometry technique. Five mathematical models (e.g., multiple linear regression and principal component regression) were used as calibration methods. Two methods were used to extract signals from the matrix: maximum signal values from individual sensors and the logarithm of the ratio of the maximum signal to the sensor baseline. The developed models were used to determine the predicted odor concentrations. The selection of the optimal model was based on the compatibility with olfactometric measurements, taking the mean square error as a criterion and their accordance with the proposed OAQII. For the first method of extracting signals from the matrix, the best model was characterized by RMSE equal to 8.092 and consistency in indices at the level of 0.85. In the case of the logarithmic approach, these values were 4.220 and 0.98, respectively. The obtained results allow to conclude that gas sensor arrays can be successfully used for air quality monitoring; however, the key issues are data processing and the selection of an appropriate mathematical model.


Subject(s)
Air Pollution , Composting , Models, Theoretical , Odorants/analysis , Olfactometry
3.
Biosensors (Basel) ; 12(5)2022 May 07.
Article in English | MEDLINE | ID: mdl-35624609

ABSTRACT

Cleaning a quartz crystal microbalance (QCM) plays a crucial role in the regeneration of its biosensors for reuse. Imprecise removal of a receptor layer from a transducer's surface can lead to unsteady operation during measurements. This article compares three approaches to regeneration of the piezoelectric transducers using the electrochemical, oxygen plasma and Piranha solution methods. Optimization of the cleaning method allowed for evaluation of the influence of cleaning on the surface of regenerated biosensors. The effectiveness of cleaning the QCM transducers with a receptor layer in the form of a peptide with the KLLFDSLTDLKKKMSEC-NH2 sequence was described. Preliminary cleaning was tested for new electrodes to check the potential impact of the cleaning on deposition and the transducer's operation parameters. The effectiveness of the cleaning was assessed via the measurement of a resonant frequency of the QCM transducers. Based on changes in the resonant frequency and the Sauerbrey equation, it was possible to evaluate the changes in mass adsorption on the transducer's surface. Moreover, the morphology of the QCM transducer's surface subjected to the selected cleaning techniques was presented with AFM imaging. The presented results confirm that each method is suitable for peptide-based biosensors cleaning. However, the most invasive seems to be the Piranha method, with the greatest decrease in performance after regeneration cycles (25% after three cycles). The presented techniques were evaluated for their efficiency with respect to a selected volatile compound, which in the future should allow reuse of the biosensors in particular applications, contributing to cost reduction and extension of the sensors' lifetime.


Subject(s)
Biosensing Techniques , Quartz Crystal Microbalance Techniques , Biosensing Techniques/methods , Electrodes , Peptides , Quartz/chemistry
4.
Diagnostics (Basel) ; 11(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34679447

ABSTRACT

We aimed to evaluate the accuracy of ultrasonography with gynecologic examination performed by a gynecological oncologist and magnetic resonance imaging (MRI) interpreted by a radiologist for the local and regional staging of patients with early-stage cervical cancer. The study was a single-site sub-analysis of the multi-institutional prospective, observational Total Mesometrial Resection (TMMR) Register Study, which included all consecutive study patients from Gdynia Oncology Center. Imaging results were compared with pathology findings. A total of 58 consecutive patients were enrolled, and 50 underwent both ultrasonography and MRI. The accuracy of tumor detection and measurement errors was comparable across ultrasonography and MRI. There were no significant differences between ultrasonography and MRI in the accuracy of detecting parametrial involvement (92%, confidence interval (CI) 84-100% vs. 76%, CI 64-88%, p = 0.3), uterine corpus infiltration (94%, CI 87-100% vs. 86%, CI 76-96%, p = 0.3), and vaginal fornix involvement (96%, CI 91-100% vs. 76%, CI 64-88%, p = 0.3). The importance of uterine corpus involvement for the first-line lymph node metastases was presented in few cases. The accuracy of ultrasonography was higher than MRI for correctly predicting tumor stage: International Federation of Gynecology and Obstetrics (FIGO)-2018: 69%, CI 57-81% vs. 42%, CI 28-56%, p = 0.002, T (from TNM system): 79%, CI 69-90% vs. 52%, CI 38-66%, p = 0.0005, and ontogenetic tumor staging: 88%, CI 80-96% vs. 70%, CI 57-83%, p = 0.005. For patients with cervical cancer who are eligible for TMMR and therapeutic lymphadenectomy, the accuracy of ultrasonography performed by gynecological oncologists is not inferior to that of MRI interpreted by a radiologist for assessing specific local parameters, and is more accurate for local staging of the disease and is thus more clinically useful for planning adequate surgical treatment.

5.
Sensors (Basel) ; 21(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34372218

ABSTRACT

The article presents a new method of monitoring and assessing the course of the dry methane reforming process with the use of a gas sensor array. Nine commercially available TGS chemical gas sensors were used to construct the array (seven metal oxide sensors and two electrochemical ones). Principal Component Regression (PCR) was used as a calibration method. The developed PCR models were used to determine the quantitative parameters of the methane reforming process: Inlet Molar Ratio (IMR) in the range 0.6-1.5, Outlet Molar Ratio (OMR) in the range 0.6-1.0, and Methane Conversion Level (MCL) in the range 80-95%. The tests were performed on model gas mixtures. The mean error in determining the IMR is 0.096 for the range of molar ratios 0.6-1.5. However, in the case of the process range (0.9-1.1), this error is 0.065, which is about 6.5% of the measured value. For the OMR, an average error of 0.008 was obtained (which gives about 0.8% of the measured value), while for the MCL, the average error was 0.8%. Obtained results are very promising. They show that the use of an array of non-selective chemical sensors together with an appropriately selected mathematical model can be used in the monitoring of commonly used industrial processes.


Subject(s)
Gases , Methane , Models, Theoretical , Oxides
6.
Sensors (Basel) ; 19(19)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31623308

ABSTRACT

This paper presents the results of research on determining the optimal length of a peptide chain to effectively bind octanal molecules. Peptides that map the aldehyde binding site in HarmOBP7 were immobilized on piezoelectric transducers. Based on computational studies, four Odorant Binding Protein-derived Peptides (OBPPs) with different sequences were selected. Molecular modelling results of ligand docking with selected peptides were correlated with experimental results. The use of low-molecular synthetic peptides, instead of the whole protein, enabled the construction OBPPs-based biosensors. This work aims at developing a biomimetic piezoelectric OBPPs sensor for selective detection of octanal. Moreover, the research is concerned with the ligand binding affinity depending on different peptides' chain lengths. The authors believe that the chain length can have a substantial influence on the type and effectiveness of peptide-ligand interaction. A confirmation of in silico investigation results is the correlation with the experimental results, which shows that the highest affinity to octanal is exhibited by the longest peptide (OBPP4 - KLLFDSLTDLKKKMSEC-NH2). We hypothesized that the binding of long chain aldehydes to the peptide, mimicking the binding site of HarmOBP7, induced a conformational change in the peptide deposited on a selected transducer. The constructed OBPP4-based biosensors were able to selectively bind octanal in the gas phase. It was also shown that the sensors were characterized by high selectivity with respect to octanal, as well as to acetaldehyde and benzaldehyde. The results indicate that the OBPP4 peptide, mimicking the binding domain in the Odorant Binding Protein, can provide new opportunities for the development of biomimicking materials in the field of odor biosensors.


Subject(s)
Aldehydes/isolation & purification , Biosensing Techniques , Peptides/chemistry , Receptors, Odorant/chemistry , Aldehydes/chemistry , Binding Sites , Humans , Ligands , Models, Molecular , Odorants/analysis
7.
Sensors (Basel) ; 19(16)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398955

ABSTRACT

Measurement and monitoring of air quality in terms of odor nuisance is an important problem. From a practical point of view, it would be most valuable to directly link the odor intensity with the results of analytical air monitoring. Such a solution is offered by electronic noses, which thanks to the possibility of holistic analysis of the gas sample, allow estimation of the odor intensity of the gas mixture. The biggest problem is the occurrence of odor interactions between the mixture components. For this reason, methods that can take into account the interaction between components of the mixture are used to analyze data from the e-nose. In the presented study, the fuzzy logic algorithm was proposed for determination of odor intensity of binary mixtures of eight odorants: n-Hexane, cyclohexane, toluene, o-xylene, trimethylamine, triethylamine, α-pinene, and ß-pinene. The proposed algorithm was compared with four theoretical perceptual models: Euclidean additivity, vectorial additivity, U model, and UPL model.

8.
Sensors (Basel) ; 18(11)2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30441858

ABSTRACT

The quartz-crystal microbalance is a sensitive and universal tool for measuring concentrations of various gases in the air. Biochemical functionalization of the QCM electrode allows a label-free detection of specific molecular interactions with high sensitivity and specificity. In addition, it enables a real-time determination of its kinetic rates and affinity constants. This makes QCM a versatile bioanalytical screening tool for various applications, with surface modifications ranging from the detection of single molecular monolayers to whole cells. Various types of biomaterials, including peptides mapping the binding sites of olfactory receptors, can be deposited as a sensitive element on the surface of the electrodes. One of key ways to ensure the sensitivity and accuracy of the sensor is provided by application of an optimal and repeatable method of immobilization. Therefore, effective sensors operation requires development of an optimal method of deposition. This paper reviews popular techniques (drop-casting, spin-coating, dip-coating) for coating peptides on piezoelectric crystals surface. Peptide (LEKKKKDC-NH2) derived from an aldehyde binding site in the HarmOBP7 protein was synthesized and used as a sensing material for the biosensor. The degree of deposition of the sensitive layer was monitoring by variations in the sensors frequency. The highest mass threshold for QCM measurements for peptides was approximately 16.43 µg·mm-2 for spin coating method. Developed sensor exhibited repeatable response to acetaldehyde. Moreover, responses to toluene was observed to evaluate sensors specificity. Calibration curves of the three sensors showed good determination coefficients (R² > 0.99) for drop casting and dip coating and 0.97 for the spin-coating method. Sensors sensitivity vs. acetaldehyde were significantly higher for the dip-coating and drop-casting methods and lower for spin-coating one.


Subject(s)
Biosensing Techniques , Gases/isolation & purification , Peptides/chemistry , Quartz Crystal Microbalance Techniques , Aldehydes/chemistry , Binding Sites , Electrodes , Gases/toxicity , Kinetics , Protein Binding , Surface Properties
9.
Monatsh Chem ; 149(9): 1693-1699, 2018.
Article in English | MEDLINE | ID: mdl-30174352

ABSTRACT

ABSTRACT: Malodorous odors, by definition, are unpleasant, irritating smells being a mixture of volatile chemical compounds that can be sensed at low concentrations. Due to the increasing problem of odor nuisance associated with odor sensations, and thus the need to remove them from the air, deodorization techniques are commonly used. Biofiltration is one of the methods of reducing odorants in the air stream. In the paper, the possibility of using an electronic nose as an alternative method to gas chromatography for the online monitoring and evaluation of efficiency of the n-butanol vapors biofiltration process in a transient state was investigated. Three calibration models were used in the research, i.e., multiple linear regression, principal component regression, and partial least-square regression. The obtained results were compared with the theoretical values.

10.
Sensors (Basel) ; 18(2)2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29419798

ABSTRACT

This paper presents application of an electronic nose prototype comprised of eight sensors, five TGS-type sensors, two electrochemical sensors and one PID-type sensor, to identify odour interaction phenomenon in two-, three-, four- and five-component odorous mixtures. Typical chemical compounds, such as toluene, acetone, triethylamine, α-pinene and n-butanol, present near municipal landfills and sewage treatment plants were subjected to investigation. Evaluation of predicted odour intensity and hedonic tone was performed with selected artificial neural network structures with the activation functions tanh and Leaky rectified linear units (Leaky ReLUs) with the parameter a = 0.03 . Correctness of identification of odour interactions in the odorous mixtures was determined based on the results obtained with the electronic nose instrument and non-linear data analysis. This value (average) was at the level of 88% in the case of odour intensity, whereas the average was at the level of 74% in the case of hedonic tone. In both cases, correctness of identification depended on the number of components present in the odorous mixture.

11.
Sensors (Basel) ; 17(11)2017 Nov 19.
Article in English | MEDLINE | ID: mdl-29156597

ABSTRACT

This review paper presents different ways to apply a measurement instrument of e-nose type to evaluate ambient air with respect to detection of the odorants characterized by unpleasant odour in a vicinity of municipal processing plants. An emphasis was put on the following applications of the electronic nose instruments: monitoring networks, remote controlled robots and drones as well as portable devices. Moreover, this paper presents commercially available sensors utilized in the electronic noses and characterized by the limit of quantification below 1 ppm v/v, which is close to the odour threshold of some odorants. Additionally, information about bioelectronic noses being a possible alternative to electronic noses and their principle of operation and application potential in the field of air evaluation with respect to detection of the odorants characterized by unpleasant odour was provided.

12.
Sensors (Basel) ; 17(10)2017 Oct 18.
Article in English | MEDLINE | ID: mdl-29057811

ABSTRACT

The paper presents an application of an electronic nose prototype comprised of six TGS-type sensors and one PID-type sensor to identify odour interaction phenomena in odorous three-component mixtures. The investigation encompassed eight odorous mixtures-toluene-acetone-triethylamine and formaldehyde-butyric acid-pinene-characterized by different odour intensity and hedonic tone. A principal component regression (PCR) calibration model was used for evaluation of predicted odour intensity and hedonic tone. Correctness of identification of odour interactions in the odorous three-component mixtures was determined based on the results obtained with the electronic nose. The results indicated a level of 75-80% for odour intensity and 57-73% for hedonic tone. The average root mean square error of prediction amounted to 0.03-0.06 for odour intensity determination and 0.07-0.34 for hedonic tone evaluation of the odorous three-component mixtures.

SELECTION OF CITATIONS
SEARCH DETAIL
...