Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(40): 14411-14420, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34569575

ABSTRACT

Nickel(II) and zinc(II) complexes of various peptide fragments of tau protein have been investigated by potentiometric, UV-Vis, CD and ESI-MS techniques. The peptides include the native fragment tau(9-16) (Ac-EVMEDHAG-NH2), and the Gln/Lys and Tyr/Ala mutated peptides (Ac-KGGYTMHK-NH2 and Ac-KGGATMHK-NH2) of tau(26-33). Similar to copper(II) the complexes of a chimeric peptide containing both His14 and His32 residues in one molecule (Ac-EDHAGTMHQD-NH2) were also studied. The metal binding ability of the R3 domain was studied by using the native fragment tau(326-333) (Ac-GNIHHKPG-NH2), and its two mutants (Ac-GNIHHKAG-NH2) and (Ac-GNGHHKPG-NH2) and the corresponding 1-histidine mutants (Ac-GNGAHKPG-NH2 and Ac-GNGHAKPG-NH2). The results of this study reveal that the histidyl residues of the N-terminal and R3 regions of tau protein can effectively bind nickel(II) and zinc(II) ions. In the case of nickel(II) and zinc(II) the M-Nim coordinated complexes are the major species in the physiological pH range and their stability is significantly enhanced by the presence of Glu and Asp residues in the neighbourhood of the His14 site. For all studied peptides, nickel(II) ions are able to promote the deprotonation and coordination of amide groups preceding histidine resulting in the exclusive formation of square planar (Nim,3N-) complexes in alkaline solutions. The native fragment of the R3 region and its mutants containing two adjacent histidine moieties also bind only one nickel(II) ion with the His330 residue being the primary metal binding site. Exclusive binding of the independent imidazole side chains (His14 and His32 sites) cannot prevent the hydrolysis of zinc(II) in a slightly basic solution but the adjacent histidines of the R3 domain can promote the formation of amide coordinated zinc(II) complexes.


Subject(s)
Coordination Complexes/chemistry , Nickel/chemistry , Peptide Fragments/chemistry , Thermodynamics , Zinc/chemistry , tau Proteins/chemistry , Histidine/chemistry , Humans , Hydrogen-Ion Concentration
2.
ChemistryOpen ; 10(4): 451-463, 2021 04.
Article in English | MEDLINE | ID: mdl-33830669

ABSTRACT

The Cd(II)-, Pb(II)-, Ni(II)- and Zn(II)-complexes of small terminally protected peptides containing CXXX, XXXC, XCCX, CXn C (n=1-3) sequences have been studied with potentiometric, UV/Vis and CD spectroscopic techniques. The cysteine thiolate group is the primary binding site for all studied metal ions, but the presence of a histidyl or aspartyl side chain in the molecule contributes to the stability of the complexes. For two-cysteine containing peptides the (S- ,S- ) coordinated species are formed in the physiological pH range and the stability increases in the Ni(II)

Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Cysteine/chemistry , Metals, Heavy/chemistry , Oligopeptides/chemistry , Amino Acid Sequence , Ligands , Molecular Structure
3.
Dalton Trans ; 48(44): 16800-16811, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31687706

ABSTRACT

Nickel(ii) complexes of peptides CSSACS-NH2, ACSSACS-NH2, SSCSSACS-NH2 and GACAAH-NH2 have been studied by potentiometric and various spectroscopic (UV-vis, CD, NMR, and ESI-MS) techniques. All peptides have high nickel(ii) binding ability in the form of square planar complexes and the stability order of the peptides is: CSSACS-NH2 > ACSSACS-NH2 > SSCSSACS-NH2 ∼ GACAAH-NH2. The different metal binding affinities of these peptides are related to the differences in the speciation and in the binding modes of the major species. An almost exclusive formation of bis(ligand) complexes via an (NH2,S-) 5-membered chelate from the amino terminus is characteristic of CSSACS-NH2. The (NH2,N-,S-) tridentate chelate is the major coordination mode of ACSSACS-NH2 but the distant cysteine can also contribute to metal binding. The higher nickel(ii) binding ability of AC[combining low line]SSAC[combining low line]S-NH2 relative to the peptides containing an N-terminal XY-Cys motif may have important biological consequences. For example, the occurrence of the (NH2,N-,S-,S-) donor set is a common feature of both the ACSSACS-NH2 ligand and the nickel(ii) binding loop of the NiSOD enzyme (HC[combining low line]DLPC[combining low line]G…..,). In the case of SSCSSACS-NH2 and GACAAH-NH2 the amino terminus of one peptide can completely saturate the coordination sphere of the nickel(ii) ion via the formation of the (NH2,N-,N-,S-) binding mode. This rules out the formation of bis(ligand) complexes and any contribution of the distant cysteine or histidine to nickel(ii) binding in the 1 : 1 complexes. On the other hand the distant cysteine of SSCSSACS-NH2 and histidine of GACAAH-NH2 can behave as independent metal binding sites for the formation of dinuclear complexes in the presence of excess metal ions.

4.
Chempluschem ; 84(11): 1697-1708, 2019 11.
Article in English | MEDLINE | ID: mdl-31943878

ABSTRACT

Copper(II) complexes of the N-terminal peptide fragments of tau protein have been studied by potentiometric and various spectroscopic techniques (UV-vis, CD, ESR and ESI-MS). The octapeptide Tau(9-16) (Ac-EVMEDHAG-NH2 ) contains the H14 residue of the native protein, while Tau(26-33) (Ac-QGGYTMHQ-NH2 ) and its mutants Tau(Q26K-Q33K) (Ac-KGGYTMHK-NH2 ) and Tau(Q26K-Y29A-Q33K) (Ac-KGGATMHK-NH2 ) include the H32 residue. To compare the binding ability of H14 and H32 in a single molecule the decapeptide Ac-EDHAGTMHQD-NH2 (Tau(12-16)(30-34)) has also been synthesized and studied. The histidyl residue is the primary metal binding site for metal ions in all the peptide models studied. In the case of Tau(9-16) the side chain carboxylate functions enhance the stability of the M-Nim coordinated complexes compared to Tau(26-33) (logK(Cu-Nim )=5.04 and 3.78, respectively). Deprotonation and metal ion coordination of amide groups occur around the physiological pH range for copper(II). The formation of the imidazole- and amide-coordinated species changes the metal ion preference and the complexes formed with the peptides containing the H32 residue predominate over those of H14 at physiological pH values (90 %-10 %) and in alkaline samples (96 %-4 %).


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Peptide Fragments/chemistry , tau Proteins/chemistry , Amino Acid Sequence , Binding Sites , Mass Spectrometry , Potentiometry
SELECTION OF CITATIONS
SEARCH DETAIL
...