Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38138827

ABSTRACT

Composites consisting of iron aluminide and iron silicide phases were studied in this work. Powders of iron aluminide and iron silicide were prepared by mechanical alloying separately. Subsequently, they were blended in three different proportions and sintered by the SPS method under various conditions. After sintering, the composites are composed of FeAl and amounts of other silicides (Fe5Si3 and Fe3Si). Ternary Fe-Al-Si phases were not determined, even though their presence was predicted by DFT calculations. This disagreement was explained by steric factors, i.e., by differences in the space lattice of the present phases. Hardness and tribological properties were measured on composites with various weight ratios of iron aluminide and iron silicide. The results show that sintered silicides with the matrix composed of iron aluminide reach comparable hardness to tool steels. The composites with higher mass ratios of iron aluminide than silicide have higher hardness and better tribological properties.

2.
Materials (Basel) ; 15(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35888514

ABSTRACT

The metallurgical preparation and microstructure of as-cast Ti-45Al-2W-xC (in at.%) alloys were investigated. Five alloys with carbon content ranging from 0.38 to 1.96 at.% were prepared by vacuum induction melting (VIM) in graphite crucibles, followed by centrifugal casting into graphite moulds. A master 15W-85Al (at.%) alloy with a relatively low melting point and TiC powder were used to facilitate fast dissolution of W during VIM and to achieve the designed content of C in the as-cast alloys, respectively. The increase in the content of C affects the solidification path of the studied alloys. Differential thermal analysis (DTA) and microstructural observations show that the alloys with carbon content up to 0.75 at.% solidify with ß primary phase and their dendritic as-cast microstructure consists of the α2(Ti3Al) + γ(TiAl) lamellar regions, retained B2 phase enriched by W and single γ phase formed in the interdendritic region. The increase in the content of C above 0.75 at.% leads to the formation of primary lathe-shaped Ti2AlC carbides, which act as effective heterogeneous nucleation sites of ß dendrites during the solidification and grain refinement of the alloys with 1.15 and 1.96 at.% C. The increase in the content of C leads to an increase in Vickers hardness and elastic modulus in the alloys containing 1.96 at.% C.

3.
ACS Appl Mater Interfaces ; 14(27): 31396-31410, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35759353

ABSTRACT

To explore an effective route of customizing the superelasticity (SE) of NiTi shape memory alloys via modifying the grain structure, binary Ni55Ti45 (wt) alloys were fabricated in as-cast, hot swaged, and hot-rolled conditions, presenting contrasting grain sizes and grain boundary types. In situ synchrotron X-ray Laue microdiffraction and in situ synchrotron X-ray powder diffraction techniques were employed to unravel the underlying grain structure mechanisms that cause the diversity of SE performance among the three materials. The evolution of lattice rotation, strain field, and phase transformation has been revealed at the micro- and mesoscale, and the effect of grain structure on SE performance has been quantified. It was found that (i) the Ni4Ti3 and NiTi2 precipitates are similar among the three materials in terms of morphology, size, and orientation distribution; (ii) phase transformation happens preferentially near high-angle grain boundary (HAGB) yet randomly in low-angle grain boundary (LAGB) structures; (iii) the smaller the grain size, the higher the phase transformation nucleation kinetics, and the lower the propagation kinetics; (iv) stress concentration happens near HAGBs, while no obvious stress concentration can be observed in the LAGB grain structure during loading; (v) the statistical distribution of strain in the three materials becomes asymmetric during loading; (vi) three grain lattice rotation modes are identified and termed for the first time, namely, multi-extension rotation, rigid rotation, and nondispersive rotation; and (vii) the texture evolution of B2 austenite and B19' martensite is not strongly dependent on the grain structure.

4.
Materials (Basel) ; 15(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35160643

ABSTRACT

Ternary Mn2FeSi alloy was synthesized from pure elemental powders by mechanical alloying, using a high-energy planetary ball mill. The formation of an inverse-Heusler phase after 168 h of milling and subsequent annealing at 1173 K for 1.5 h was confirmed by X-ray diffraction. The diffractogram analysis yielded XA structure and the lattice parameter 0.5677 nm in a good agreement with the theoretically obtained value of 0.560 nm. The final powder was formed by particles of irregular shape and median diameter D50 of 3.8 µm and their agglomerates. The chemical analysis resulted in the mean composition of 49.0 at.% Mn, 25.6 at.% Fe and 25.4 at.% Si. At room temperature, the prepared samples featured a heterogeneous magnetic structure consisting of dominant paramagnetic phase confirmed by Mössbauer spectrometry and a weak ferro-/ferrimagnetic contribution detected by magnetization curves. From the field-cooled and zero-field-cooled curves the Néel temperature of 67 K was determined.

5.
Materials (Basel) ; 14(4)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567729

ABSTRACT

Intermetallic compounds based on Ti-Al- (Si) are attractive materials with good thermal stability and low density. However, the production of these materials is quite complicated. Partially modified conventional methods of melting metallurgy are most often used due to availability, possible high productivity, and relatively low production costs. Therefore, some technologies for the production of intermetallics based on Ti-Al are currently available, but with certain disadvantages, which are caused by poor casting properties or extreme reactivity of the melt with crucibles. Some shortcomings can be eliminated by modifying the melting technology, which contributes to increasing the cost of the process. The work deals with the preparation of Ti-Al-Si intermetallic compounds with different contents of aluminum and silicon, which were produced by centrifugal casting in an induction vacuum furnace Linn Supercast-Titan. This process could contribute to the commercial use of these alloys in the future. For this research, the TiAl15Si15(in wt.%) alloy was selected, which represents a balanced ratio of aluminides and silicides in its structure, and the TiAl35Si5 alloy, which due to the lower silicon content allows better melting conditions, especially with regard to the melting temperature. This alloy was also investigated after HIP ("Hot Isostatic Pressing") treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...