Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int Marit Health ; 73(1): 1-9, 2022.
Article in English | MEDLINE | ID: mdl-35380168

ABSTRACT

BACKGROUND: In-situ burning (ISB) could be an effective cleanup method during spills. This study aims to study occupational exposure to pollutants emitted from offshore, large-scale ISB-experiments among personnel on vessels involved in ISB. MATERIALS AND METHODS: Six experimental ISBs after release of 4.2-6 m3 crude or refined oils were performed. Air measurements on three vessels were taken of particulate matter (PM) of different size fractions, polycyclic aromatic hydrocarbons (PAH) and volatile organic compounds (VOC). RESULTS: One vessel was located upwind (about 80-140 m) from the burning oil while two work boats were positioned 200-400 m downwind. One of the work boats moved back and forth transverse to the smoke plume while the other followed the edge of the smoke plume downwind. During the burn period (28-63 min) the range of mean concentrations of PM2.5 particles in the closest work boat downwind from the burn (0.068-0.616 mg/m3) was considerably higher than in the upwind vessel (0.0198-0.029 mg/m3) and in the work boat moving downwind at the edge of the visible smoke (0.007-0.078 mg/m3). The particles were mainly in the PM<1 fraction. In the work boat closest to the burn the mean concentration of particulate PAH and VOC was 0.046-0.070 ng/m3 and < limit of detection -17.1 ppm, respectively. CONCLUSIONS: The mean PM2.5 levels in the closest vessel varied between 4 and 41 times higher than the 24-hour Norwegian Air Quality Criteria for the general population, indicating that the particulate exposure may impose a health risk for personnel up to 400 m downwind from an ISB. Exposure to VOC and PAH among crew on board vessels both upwind and downwind from the burning was low during these conditions. However, it is recommended that crew on vessels close to and downwind of smoke plumes from oil fires should use half-masks with P3 filters.


Subject(s)
Air Pollutants , Fires , Occupational Exposure , Petroleum Pollution , Air Pollutants/adverse effects , Air Pollutants/analysis , Humans , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Petroleum Pollution/analysis , Ships
SELECTION OF CITATIONS
SEARCH DETAIL
...