Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 11 08.
Article in English | MEDLINE | ID: mdl-36346018

ABSTRACT

While dysregulation of adipocyte endocrine function plays a central role in obesity and its complications, the vast majority of adipokines remain uncharacterized. We employed bio-orthogonal non-canonical amino acid tagging (BONCAT) and mass spectrometry to comprehensively characterize the secretome of murine visceral and subcutaneous white and interscapular brown adip ocytes. Over 600 proteins were identified, the majority of which showed cell type-specific enrichment. We here describe a metabolic role for leucine-rich α-2 glycoprotein 1 (LRG1) as an obesity-regulated adipokine secreted by mature adipocytes. LRG1 overexpression significantly improved glucose homeostasis in diet-induced and genetically obese mice. This was associated with markedly reduced white adipose tissue macrophage accumulation and systemic inflammation. Mechanistically, we found LRG1 binds cytochrome c in circulation to dampen its pro-inflammatory effect. These data support a new role for LRG1 as an insulin sensitizer with therapeutic potential given its immunomodulatory function at the nexus of obesity, inflammation, and associated pathology.


Subject(s)
Adipokines , Insulin Resistance , Animals , Mice , Inflammation , Insulin , Obesity , Mice, Obese , Glycoproteins/genetics
2.
Genes Dev ; 35(9-10): 771-781, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33832988

ABSTRACT

MicroRNAs (miRNAs) are short, noncoding RNAs that associate with Argonaute (AGO) to influence mRNA stability and translation, thereby regulating cellular determination and phenotype. While several individual miRNAs have been shown to control adipocyte function, including energy storage in white fat and energy dissipation in brown fat, a comprehensive analysis of miRNA activity in these tissues has not been performed. We used high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) to comprehensively characterize the network of high-confidence, in vivo mRNA:miRNA interactions across white and brown fat, revealing >20,000 unique AGO binding sites. When coupled with miRNA and mRNA sequencing, we found an inverse correlation between depot-enriched miRNAs and their targets. To illustrate the functionality of our HITS-CLIP data set in identifying specific miRNA:mRNA interactions, we show that miR-29 is a novel regulator of leptin, an adipocyte-derived hormone that coordinates food intake and energy homeostasis. Two independent miR-29 binding sites in the leptin 3' UTR were validated using luciferase assays, and miR-29 gain and loss of function modulated leptin mRNA and protein secretion in primary adipocytes. This work represents the only experimentally generated miRNA targetome in adipose tissue and identifies multiple regulatory pathways that may specify the unique identities of white and brown fat.


Subject(s)
Adipose Tissue/cytology , Adipose Tissue/metabolism , Argonaute Proteins/metabolism , Chromatin Immunoprecipitation Sequencing , Gene Expression Regulation , MicroRNAs/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Animals , Binding Sites/genetics , Cells, Cultured , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism
3.
Cell Metab ; 33(3): 499-512.e6, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33596409

ABSTRACT

Obesity is a major risk factor for adverse outcomes in breast cancer; however, the underlying molecular mechanisms have not been elucidated. To investigate the role of crosstalk between mammary adipocytes and neoplastic cells in the tumor microenvironment (TME), we performed transcriptomic analysis of cancer cells and adjacent adipose tissue in a murine model of obesity-accelerated breast cancer and identified glycine amidinotransferase (Gatm) in adipocytes and Acsbg1 in cancer cells as required for obesity-driven tumor progression. Gatm is the rate-limiting enzyme in creatine biosynthesis, and deletion in adipocytes attenuated obesity-driven tumor growth. Similarly, genetic inhibition of creatine import into cancer cells reduced tumor growth in obesity. In parallel, breast cancer cells in obese animals upregulated the fatty acyl-CoA synthetase Acsbg1 to promote creatine-dependent tumor progression. These findings reveal key nodes in the crosstalk between adipocytes and cancer cells in the TME necessary for obesity-driven breast cancer progression.


Subject(s)
Breast Neoplasms/pathology , Cell Communication/physiology , Creatine/metabolism , Obesity/pathology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Amidinotransferases/deficiency , Amidinotransferases/genetics , Amidinotransferases/metabolism , Animals , Cell Line, Tumor , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Diet, High-Fat , Female , Humans , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA Interference , RNA, Small Interfering/metabolism , Tumor Microenvironment
4.
Nat Neurosci ; 18(11): 1617-22, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26436900

ABSTRACT

Speech and vocal impairments characterize many neurological disorders. However, the neurogenetic mechanisms of these disorders are not well understood, and current animal models do not have the necessary circuitry to recapitulate vocal learning deficits. We developed germline transgenic songbirds, zebra finches (Taneiopygia guttata) expressing human mutant huntingtin (mHTT), a protein responsible for the progressive deterioration of motor and cognitive function in Huntington's disease (HD). Although generally healthy, the mutant songbirds had severe vocal disorders, including poor vocal imitation, stuttering, and progressive syntax and syllable degradation. Their song abnormalities were associated with HD-related neuropathology and dysfunction of the cortical-basal ganglia (CBG) song circuit. These transgenics are, to the best of our knowledge, the first experimentally created, functional mutant songbirds. Their progressive and quantifiable vocal disorder, combined with circuit dysfunction in the CBG song system, offers a model for genetic manipulation and the development of therapeutic strategies for CBG-related vocal and motor disorders.


Subject(s)
Learning/physiology , Nerve Tissue Proteins/genetics , Neurons/physiology , Vocalization, Animal/physiology , Animals , Animals, Genetically Modified , Basal Ganglia/physiology , Finches , Humans , Huntingtin Protein , Songbirds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...