Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Dermatol ; 29(2): 126-140, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31010797

ABSTRACT

The treatment of difficult-to-treat wounds can be challenging. Although a number of approaches have been investigated, the healing process may be slow and unsatisfactory. An alternative approach is the use of a continuous sheet of skin cells applied over a wound which may improve cell implantation and patient recovery. To analyse the gene expression profile of fibroblast/keratinocyte co-culture on poly(tri[ethylene glycol] ethyl ether methacrylate) (P[TEGMA-EE]), a thermoresponsive biocompatible surface. Cultures were grown for 72 hours as a continuous layer on P(TEGMA-EE). Assays for genotoxicity, cell morphology, and fluorescence-assisted flow cytometry were performed to exclude adverse effects. A gene expression profile related to the extracellular matrix was investigated by microarray analysis. For fibroblast monocultures and fibroblast/keratinocyte co-cultures maintained for 72 hours on P(TEGMA-EE), no change in morphology or specific surface markers, or DNA damage (comet assay) was observed, relative to control surface. Moreover, no detrimental impact was ascertained based on microarray analysis. In response to lowered temperature, the detachment of a continuous cell layer sheet from the thermoresponsive surface was observed. When gene expression was compared between fibroblasts cultured alone and co-cultured with keratinocytes on P(TEGMA-EE), 10 genes were shown to be differentially expressed. Of these genes, six were significantly differentially expressed between cultures grown on P(TEGMA-EE) and human skin samples. Our results indicate that P(TEGMA-EE) is fully biocompatible and is therefore a suitable surface for successful preparation and recovery of two-layered fibroblast/keratinocyte co-culture as a continuous sheet of cells.


Subject(s)
Coculture Techniques , Fibroblasts/cytology , Keratinocytes/cytology , Polyethylene Glycols/pharmacology , Polymethacrylic Acids/pharmacology , Skin/cytology , Cells, Cultured , Comet Assay , Flow Cytometry , Gene Expression Profiling , Humans
2.
Biomacromolecules ; 17(8): 2691-700, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27409457

ABSTRACT

This study describes a novel approach to polymeric nanocarriers of the therapeutic peptide met-enkephalin based on the aggregation of thermoresponsive polymers. Thermoresponsive bioconjugate poly((di(ethylene glycol) monomethyl ether methacrylate)-ran-(oligo(ethylene glycol) monomethyl ether methacrylate) is synthesized by AGET ATRP using modified met-enkephalin as a macroinitiator. The abrupt heating of bioconjugate water solution leads to the self-assembly of bioconjugate chains and the formation of mesoglobules of controlled sizes. Mesoglobules formed by bioconjugates are stabilized by coating with cross-linked two-layer shell via nucleated radical polymerization of N-isopropylacrylamide using a degradable cross-linker. The targeting peptide RGD, containing the fluorescence marker carboxyfluorescein, is linked to a nanocarrier during the formation of the outer shell layer. In the presence of glutathione, the whole shell is completely degradable and the met-enkephalin conjugate is released. It is anticipated that precisely engineered nanoparticles protecting their cargo will emerge as the next-generation platform for cancer therapy and many other biomedical applications.


Subject(s)
Drug Carriers/chemistry , Enkephalin, Methionine/chemistry , Nanoparticles/chemistry , Oligopeptides/chemistry , Polymers/chemistry , Polymerization , Surface Properties
3.
J Mater Sci Mater Med ; 27(6): 111, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27153827

ABSTRACT

In cell or tissue engineering, it is essential to develop a support for cell-to-cell adhesion, which leads to the generation of cell sheets connected by extracellular matrix. Such supports must be hydrophobic and should result in a detachable cell sheet. A thermoresponsive support that enables the cultured cell sheet to detach using only a change in temperature could be an interesting alternative in regenerative medicine. The aim of this study was to evaluate plates covered with thermoresponsive polymers as supports for the formation of fibroblast sheets and to develop a damage-free procedure for cell sheet transfer with the use of membranes as transfer tools. Human skin fibroblasts were seeded on supports coated with a thermoresponsive polymer: commercial UpCell™ dishes (NUNC™) coated with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and dishes coated with thermoresponsive poly(tri(ethylene glycol) monoethyl ether methacrylate) (P(TEGMA-EE)). Confluent fibroblast sheets were effectively cultured and harvested from both commercial PNIPAM-coated dishes and laboratory P(TEGMA-EE)-coated dishes. To transfer a detached cell sheet, two membranes, Immobilon-P(®) and SUPRATHEL(®), were examined. The use of SUPRATHEL for relocating the cell sheets opens a new possibility for the clinical treatment of wounds. This study established the background for implementing thermoresponsive supports for transplanting in vitro cultured fibroblasts.


Subject(s)
Cell Culture Techniques/instrumentation , Fibroblasts/physiology , Membranes, Artificial , Cell Culture Techniques/methods , Cell Survival , Humans , Skin/cytology , Temperature , Tissue Engineering/instrumentation , Tissue Engineering/methods
4.
Nanoscale ; 7(40): 16823-33, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26399397

ABSTRACT

This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a "click" reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species.

5.
ACS Appl Mater Interfaces ; 5(6): 2197-207, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23448307

ABSTRACT

Well-defined thermosensitive poly[tri(ethylene glycol) monoethyl ether methacrylate] (P(TEGMA-EE)) brushes were synthesized on a solid substrate by the surface-initiated atom transfer radical polymerization of TEGMA-EE. The polymerization reaction was initiated by 2-bromo-2-methylpropionate groups immobilized on the surface of the wafers. The changes in the surface composition, morphology, philicity, and thickness that occurred at each step of wafer functionalization confirmed that all surface modification procedures were successful. Both the successful modification of the surface and bonding of the P(TEGMA-EE) layer were confirmed by X-ray photoelectron spectroscopy (XPS) measurements. The thickness of the obtained P(TEGMA-EE) layers increased with increasing polymerization time. The increase of environmental temperature above the cloud point temperature of P(TEGMA-EE) caused the changes of surface philicity. A simultaneous decrease in the polymer layer thickness confirmed the thermosensitive properties of these P(TEGMA-EE) layers. The thermosensitive polymer surfaces obtained were evaluated for the growth and harvesting of human fibroblasts (basic skin cells). At 37 °C, seeded cells adhered to and spread well onto the P(TEGMA-EE)-coated surfaces. A confluent cell sheet was formed within 24 h of cell culture. Lowering the temperature to an optimal value of 17.5 °C (below the cloud point temperature of the polymer, TCP, in cell culture medium) led to the separation of the fibroblast sheet from the polymer layer. These promising results indicate that the surfaces produced may successfully be used as substrate for engineering of skin tissue, especially for delivering cell sheets in the treatment of burns and slow-healing wounds.


Subject(s)
Cell Culture Techniques/methods , Fibroblasts/cytology , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Cell Adhesion , Cells, Cultured , Chromatography, Gel , Humans , Microscopy, Atomic Force , Microscopy, Fluorescence , Photoelectron Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...