Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 411(24): 6309-6317, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31011786

ABSTRACT

Untargeted metabolite profiling of biological samples is a challenge for analytical science due to the high degree of complexity of biofluids. Isobaric species may also not be resolved using mass spectrometry alone. As a result of these factors, many potential biomarkers may not be detected or are masked by co-eluting interferences in conventional LC-MS metabolomic analyses. In this study, a comprehensive liquid chromatography-mass spectrometry workflow incorporating a fast-scanning miniaturised high-field asymmetric waveform ion mobility spectrometry separation (LC-FAIMS-MS) is applied to the untargeted metabolomic analysis of human urine. The time-of-flight mass spectrometer used in the study was scanned at a rate of 20 scans s-1 enabling a FAIMS CF spectrum to be acquired within a 1-s scan time, maintaining an adequate number of data points across each LC peak. The developed method is demonstrated to be able to resolve co-eluting isomeric species and shows good reproducibility (%RSD < 4.9%). The nested datasets obtained for fresh, aged, and QC urine samples were submitted for multivariate statistical analysis. Seventy unique biomarker ions showing a statistically significant difference between fresh and aged urine were identified with optimal transmission CF values obtained across the full CF spectrum. The potential of using FAIMS to select ions for in-source collision-induced dissociation is demonstrated for FAIMS-selected methylxanthine ions yielding characteristic fragment ion species indicative of the precursor. Graphical abstract.


Subject(s)
Chromatography, Liquid/methods , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Metabolomics , Biomarkers/urine , Female , Humans , Male , Reproducibility of Results
2.
Toxicol Res (Camb) ; 5(2): 714-715, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-30102300

ABSTRACT

Recently, Costa et al. published an article about promising biomarkers for estimating the postmortem interval. Instead of postmortem blood, antemortem blood was putrefied in vitro by exposing the blood to a temperature gradient. However, in this way several other influencing factors were excluded, hence, the accuracy of the proposed model is doubtful. Therefore, the aim of this comment is to discuss the methodology, results and shortcomings of the study of Costa et al.

SELECTION OF CITATIONS
SEARCH DETAIL
...