Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Labelled Comp Radiopharm ; 67(4): 120-130, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332677

ABSTRACT

Kainate receptors play a crucial role in mediating synaptic transmission within the central nervous system. However, the lack of selective pharmacological tool compounds for the GluK3 subunit represents a significant challenge in studying these receptors. Recently presented compound 1 stands out as a potent antagonist of GluK3 receptors, exhibiting nanomolar affinity at GluK3 receptors and strongly inhibiting glutamate-induced currents at homomeric GluK1 and GluK3 receptors in HEK293 cells with Kb values of 65 and 39 nM, respectively. This study presents the synthesis of two potent GluK3-preferring iodine derivatives of compound 1, serving as precursors for radiolabelling. Furthermore, we demonstrate the optimisation of dehalogenation conditions using hydrogen and deuterium, resulting in [2H]-1, and demonstrate the efficient synthesis of the radioligand [3H]-1 with a specific activity of 1.48 TBq/mmol (40.1 Ci/mmol). Radioligand binding studies conducted with [3H]-1 as a radiotracer at GluK1, GluK2, and GluK3 receptors expressed in Sf9 and rat P2 membranes demonstrated its potential applicability for selectively studying native GluK3 receptors in the presence of GluK1 and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-blocking ligands.


Subject(s)
Glutamic Acid , Receptors, Kainic Acid , Rats , Animals , Humans , Tritium , Deuterium , HEK293 Cells , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/metabolism , Receptors, AMPA/chemistry , Receptors, AMPA/metabolism
2.
J Med Chem ; 67(2): 1580-1610, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38190615

ABSTRACT

Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Selenium , Rats , Animals , Alzheimer Disease/drug therapy , Serotonin/therapeutic use , Rats, Wistar , Neuroprotection , Antioxidants/pharmacology , Antioxidants/therapeutic use , Receptors, Serotonin , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
3.
Acta Crystallogr C Struct Chem ; 79(Pt 9): 334-343, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37549023

ABSTRACT

5-Arylidene derivatives of rhodanine show various biological activities. The new crystal structures of five derivatives investigated towards ABCB1 efflux pump modulation are reported, namely, 2-[5-([1,1'-biphenyl]-4-ylmethylidene]-4-oxo-2-thioxothiazolidin-3-yl)acetic acid dimethyl sulfoxide monosolvate, C18H13NO3S2·C2H6OS (1), 4-[5-([1,1'-biphenyl]-4-ylmethylidene]-4-oxo-2-thioxothiazolidin-3-yl)butanoic acid, C20H17NO3S2 (2), 5-[4-(benzyloxy)benzylidene]-2-thioxothiazolidin-4-one, C17H13NO2S2 (3), 4-{5-[4-(benzyloxy)benzylidene]-4-oxo-2-thioxothiazolidin-3-yl}butanoic acid, C21H19NO4S2 (4), and 5-[4-(diphenylamino)benzylidene]-2-thioxothiazolidin-4-one, C22H16N2OS2 (5). Compounds 1 and 3-5 crystallize in the triclinic space group P-1, while 2 crystallizes in the monoclinic space group P21/n, where the biphenyl moiety is observed in two positions (A and B). Two molecules are present in the asymmetric unit of 5 and, for the other four compounds, there is only one molecule; moreover, 1 crystallizes with one dimethyl sulfoxide molecule. The packing of the molecules containing a carboxyl group (1, 2 and 4) is determined by O-H...O hydrogen bonds, while in the other two compounds (3 and 5), the packing is determined by N-H...O hydrogen bonds. Additionally, induced-fit docking studies have been performed for the active compounds to investigate their putative binding mode inside the human glycoprotein P (P-gp) binding pocket.


Subject(s)
Acetic Acid , Dimethyl Sulfoxide , Humans , Butyric Acid , Hydrogen Bonding , Crystallography, X-Ray , Acetic Acid/chemistry
4.
ChemMedChem ; 18(18): e202300278, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37387321

ABSTRACT

Kainate receptors are a class of ionotropic glutamate receptors that respond to the excitatory neurotransmitter glutamate in the central nervous system and play an important role in the development of neurodegenerative disorders and the regulation of synaptic function. In the current study, we investigated the structure- activity relationship of the series of quinoxaline-2,3-diones substituted at N1, 6, and 7 positions, as ligands of kainate homomeric receptors GluK1-3 and GluK5. Pharmacological characterization showed that all derivatives obtained exhibited micromolar affinity at GluK3 receptors with Ki values in the range 0.1-4.4 µM range. The antagonistic properties of the selected analogues: N-(7-fluoro-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide, N-(7-(1H-imidazol-1-yl)-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide and N-(7-(1H-imidazol-1-yl)-2,3-dioxo-6-(phenylethynyl)-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide at GluK3 receptors, were confirmed by an intracellular calcium imaging assay. To correlate in vitro affinity data with structural features of the synthesized compounds and to understand the impact of the substituent in N1 position on ability to form additional protein-ligand interactions, molecular modeling and docking studies were carried out. Experimental solubility studies using UV spectroscopy detection have shown that 7-imidazolyl-6-iodo analogues with a sulfamoylbenzamide moiety at the N1 position are the best soluble compounds in the series, with molar solubility in TRISS buffer at pH 9 more than 3-fold higher compared to NBQX, a known AMPA/kainate antagonist.


Subject(s)
Kainic Acid , Receptors, Kainic Acid , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/metabolism , Quinoxalines/pharmacology , Solubility , Structure-Activity Relationship
5.
Molecules ; 28(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36770774

ABSTRACT

Since the number of people with Alzheimer's disease (AD) continues to rise, new and effective drugs are urgently needed to not only slow down the progression of the disease, but to stop or even prevent its development. Serotonin 5-HT6 receptor (5-HT6R) ligands are still a promising therapeutic target for the treatment of AD. 1,3,5-Triazine derivatives, as novel structures lacking an indole or a sulfone moiety, have proven to be potent ligands for this receptor. In present work, new derivatives of the compound MST4 (4-((2-isopropyl-5-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine), the potent 5-HT6R antagonist (Ki = 11 nM) with promising ADMET and in vivo properties, were designed. The synthesized compounds were tested for their affinity towards 5-HT6R and other receptor (off)targets (serotonin 5-HT2A, 5-HT7 and dopamine D2). Based on the new results, 4-(2-tert-butylphenoxy)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (3) was selected for extended in vitro studies as a potent and selective 5-HT6R ligand (Ki = 13 nM). Its ability to permeate the blood-brain barrier (BBB) and its hepatotoxicity were evaluated. In addition, X-ray crystallography and solubility studies were also performed. The results obtained confirm that 6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine derivatives, especially compound 3, are promising structures for further pharmacological studies as 5-HT6R ligands.


Subject(s)
Alzheimer Disease , Serotonin , Humans , Structure-Activity Relationship , Receptors, Serotonin/chemistry , Alzheimer Disease/drug therapy , Ligands , Triazines/chemistry
6.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768227

ABSTRACT

Since the 1990s, ionotropic glutamate receptors have served as an outstanding target for drug discovery research aimed at the discovery of new neurotherapeutic agents. With the recent approval of perampanel, the first marketed non-competitive antagonist of AMPA receptors, particular interest has been directed toward 'non-NMDA' (AMPA and kainate) receptor inhibitors. Although the role of AMPA receptors in the development of neurological or psychiatric disorders has been well recognized and characterized, progress in understanding the function of kainate receptors (KARs) has been hampered, mainly due to the lack of specific and selective pharmacological tools. The latest findings in the biology of KA receptors indicate that they are involved in neurophysiological activity and play an important role in both health and disease, including conditions such as anxiety, schizophrenia, epilepsy, neuropathic pain, and migraine. Therefore, we reviewed recent advances in the field of competitive and non-competitive kainate receptor antagonists and their potential therapeutic applications. Due to the high level of structural divergence among the compounds described here, we decided to divide them into seven groups according to their overall structure, presenting a total of 72 active compounds.


Subject(s)
Epilepsy , Mental Disorders , Humans , Receptors, Kainic Acid , Receptors, AMPA
7.
Eur J Med Chem ; 243: 114761, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36179403

ABSTRACT

Lymphomas are still difficult to treat even with modern therapies as, among others, multidrug resistance (MDR) is often counteracting a successful cancer therapy. P-gp/ABC-transporters are well-known for their crucial role in the main tumour MDR mechanism, eliminating drugs and cytotoxic substances from the cancer cell by efflux, and their modulators are promising for innovative therapy, but none has been approved in the pharmaceutical market yet. Herein, we have designed, synthesised and analysed 30 novel seleno- and thioether 1,3,5-triazine derivatives conducting comprehensive studies to evaluate their potential application in human JURKAT lymphoma cells. Among the new compounds, four (11, 12, 13 and 23) were much more effective than the reference inhibitor verapamil, being potent ABCB1 inhibitors already at 2 µM, while 5 and 15 showed very potent ABCB1 inhibitory activity only at 20 µM. Results of P-gp ATPase assays, supported with docking studies, indicated the competitive substrate mode of modulating action for 15, while ABCB1, ABCC1 and ABCG2 genes expression induction by 15 with q-PCR was confirmed. All compounds were evaluated for their cytotoxic and antiproliferative properties in both sensitive (PAR) and resistant (MDR) mouse T-lymphoma cell lines, and compound 15, also considering its promising ABCB1 inhibition properties, was revealed to be the best compound in terms of its cytotoxic effect (IC50: 16.73 µM) as well as concerning the antiproliferative effect (IC50: 5.35 µM) in MDR cells. Regarding the mechanistic studies looking at the cell cycle, the thioether 15 and selenium derivatives 26 and 29 were significantly effective in the regulation of cell cycle-related genes alone or in co-treatment with doxorubicin counteracting Cyclin D1 and E1 expression and increasing p53 and p21 levels, shedding first light on their mechanism of action. In summary, we explored the chemical space of seleno- and thioether 1,3,5-triazine derivatives with interesting activity against lymphoma. Especially compound 15 is worthy of being studied deeper to evaluate its precise mode of action further as well it can be improved regarding its potency and drug-likeness.


Subject(s)
Antineoplastic Agents , Lymphoma , Mice , Animals , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Sulfides/pharmacology , Drug Resistance, Neoplasm , Neoplasm Proteins , Drug Resistance, Multiple , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Lymphoma/drug therapy , Pharmaceutical Preparations , Triazines/pharmacology , Cell Line, Tumor
8.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142724

ABSTRACT

Multidrug resistance (MDR) is considered one of the major mechanisms responsible for the failure of numerous anticancer and antiviral chemotherapies. Various strategies to overcome the MDR phenomenon have been developed, and one of the most attractive research directions is focused on the inhibition of MDR transporters, membrane proteins that extrude cytotoxic drugs from living cells. Here, we report the results of our studies on a series newly synthesized of 5-arylidenerhodanines and their ability to inhibit the ABCB1 efflux pump in mouse T-lymphoma cancer cells. In the series, compounds possessing a triphenylamine moiety and the carboxyl group in their structure were of particular interest. These amphiphilic compounds showed over 17-fold stronger efflux pump inhibitory effects than verapamil. The cytotoxic and antiproliferative effects of target rhodanines on T-lymphoma cells were also investigated. A putative binding mode for 11, one of the most potent P-gp inhibitors tested here, was predicted by molecular docking studies and discussed with regard to the binding mode of verapamil.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Cell Line, Tumor , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Mice , Molecular Docking Simulation , Verapamil/pharmacology
9.
Int J Mol Sci ; 23(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35955932

ABSTRACT

Kainate receptors belong to the family of glutamate receptors ion channels, which are responsible for the majority of rapid excitatory synaptic transmission in the central nervous system. The therapeutic potential of kainate receptors is still poorly understood, which is also due to the lack of potent and subunit-selective pharmacological tools. In search of selective ligands for the GluK3 kainate receptor subtype, a series of quinoxaline-2,3-dione analogues was synthesized and pharmacologically characterized at selected recombinant ionotropic glutamate receptors. Among them, compound 28 was found to be a competitive GluK3 antagonist with submicromolar affinity and unprecedented high binding selectivity, showing a 400-fold preference for GluK3 over other homomeric receptors GluK1, GluK2, GluK5 and GluA2. Furthermore, in functional assays performed for selected metabotropic glutamate receptor subtypes, 28 did not show agonist or antagonist activity. The molecular determinants underlying the observed affinity profile of 28 were analyzed using molecular docking and molecular dynamics simulations performed for individual GluK1 and GluK3 ligand-binding domains.


Subject(s)
Receptors, Kainic Acid , Ligands , Molecular Docking Simulation , Protein Domains , Receptors, Kainic Acid/metabolism , GluK3 Kainate Receptor
10.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164136

ABSTRACT

Trying to meet the multitarget-directed ligands strategy, a series of previously described aryl-substituted phenylalanine derivatives, reported as competitive antagonists of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, were screened in vitro for their free-radical scavenging and antioxidant capacity in two different assays: ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity fluorescent (ORAC-FL) assays. The most active antioxidants 1 and 8 were further examined to evaluate their neuroprotective properties in vitro. In this study, compound 1 showed a significant neuroprotective effect against the neurotoxin 6-hydroxydopamine in neuroblastoma SH-SY5Y and IMR-32 cell lines. Both compounds also showed prevention from high levels of reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, the desired monoamine oxidase B (MAO-B) inhibition effect (IC50 = 278 ± 29 nM) for 1 was determined. No toxic effects up to 100 µM of 1 and 8 against neuroblastoma cells were observed. Furthermore, in vivo studies showed that compound 1 demonstrated significant anticonvulsant potential in 6-Hz test, but in neuropathic pain models its antiallodynic and antihyperalgesic properties were not observed. Concluding, the compound 1 seems to be of higher importance as a new phenylalanine-based lead candidate due to its confirmed promise in in vitro and in vivo anticonvulsant activity.


Subject(s)
Anticonvulsants , Monoamine Oxidase Inhibitors , Monoamine Oxidase/metabolism , Neuroprotective Agents , Phenylalanine , Receptors, AMPA/antagonists & inhibitors , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Cell Line, Tumor , Humans , Male , Mice , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Phenylalanine/analogs & derivatives , Phenylalanine/chemical synthesis , Phenylalanine/chemistry , Phenylalanine/pharmacology , Receptors, AMPA/metabolism
11.
Acta Crystallogr C Struct Chem ; 77(Pt 8): 467-478, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34350844

ABSTRACT

5-Spirofluorenehydantoin derivatives show efflux modulating, cytotoxic and antiproliferative effects in sensitive and resistant mouse T-lymphoma cells. In order to extend the knowledge available about the pharmacophoric features responsible for the glycoprotein P (P-gp) inhibitory properties of arylpiperazine derivatives of 3-methyl-5-spirofluorenehydantoin, we have performed crystal structure analyses for 1-[3-(3'-methyl-2',4'-dioxospiro[fluorene-9,5'-imidazolidin]-1'-yl)propyl]-4-phenylpiperazine-1,4-diium dichloride monohydrate, C29H32N4O22+·2Cl-·H2O (1), 3'-methyl-1'-{3-[4-(4-nitrophenyl)piperazin-1-yl]propyl}spiro[fluorene-9,5'-imidazolidine]-2',4'-dione, C29H29N5O4·H2O (2), 3'-methyl-1'-{5-[4-(4-nitrophenyl)piperazin-1-yl]pentyl}spiro[fluorene-9,5'-imidazolidine]-2',4'-dione, C31H33N5O4 (3), and 1-benzyl-4-[5-(3'-methyl-2',4'-dioxospiro[fluorene-9,5'-imidazolidin]-1'-yl)pentyl]piperazine-1,4-diium dichloride 0.613-hydrate, C32H38N4O22+·2Cl-·0.613H2O (4). Structure 3 is anhydrous but the other three structures crystallize with water present. The investigated compounds crystallize in the monoclinic crystal system, with the space group P21/n for 1 and 3, and P21/c for 2 and 4. The cations of salts 1 and 4 are doubly protonated, with the protons located on the N atoms of the piperazine rings. The packing of 1 and 4 in the crystals is dominated by intermolecular N-H...Cl and O-H...Cl hydrogen bonds. In the crystal structure of 2, the intermolecular interactions are dominated by O-H...O and O-H...N hydrogen bonds, while in 3, which is lacking in classic hydrogen-bond donors, it is C-H...O contacts that dominate. Additionally, we have performed induced-fit docking studies for the investigated compounds docked to the P-gp human homology model.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/chemistry , Heterocyclic Compounds/chemistry , Imidazolidines/chemistry , Piperazines/chemistry , Animals , Crystallography, X-Ray , Fluorenes/chemistry , Hydrogen Bonding , Mice , Molecular Structure
12.
Bioorg Chem ; 109: 104735, 2021 04.
Article in English | MEDLINE | ID: mdl-33640632

ABSTRACT

A series of 17 arylpiperazine derivatives of the 5-spiroimidazolidine-2,4-diones (6-22) has been explored, including variations in (i) the number of aromatic rings at position 5, (ii) the length of the linker, as well as (iii) the kind and position of the linked arylpiperazine terminal fragment. Synthesis (6-16) and X-ray crystallographic studies for representative compounds (8, 10, 14 and 18) have been performed. The ability to inhibit the tumor multidrug resistance (MDR) efflux pump P-glycoprotein (P-gp, ABCB1) overexpressed in mouse T-lymphoma cells was investigated. The cytotoxic and antiproliferative actions of the compounds on both the reference and the ABCB1-overproducing cells were also examined. The pharmacophore-based molecular modeling studies have been performed. ADMET properties in vitro of selected most active derivatives (6, 11 and 12) have been determined. All compounds, excluding 18, inhibited the cancer P-gp efflux pump with higher potency than that of reference verapamil. The spirofluorene derivatives with amine alkyl substituents at position 1, and the methyl group at position 3 (6-16), occurred the most potent P-gp inhibitors in the MDR T-lymphoma cell line. In particular, compounds 7 and 12 were 100-fold more potent than verapamil. Crystallography-supported pharmacophore-based SAR analysis has postulated specific structural properties that could explain this excellent cancer MDR-inhibitory action.


Subject(s)
Antineoplastic Agents/pharmacology , Imidazolidines/pharmacology , Lymphoma, T-Cell/drug therapy , Spiro Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Imidazolidines/chemical synthesis , Imidazolidines/chemistry , Lymphoma, T-Cell/metabolism , Lymphoma, T-Cell/pathology , Molecular Docking Simulation , Molecular Structure , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
13.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353167

ABSTRACT

Antazoline (ANT) was recently shown to be an effective and safe antiarrhythmic drug in the termination of atrial fibrillation. However, the drug is still not listed in clinical guidelines. No data on ANT metabolism in humans is available. We used liquid chromatography coupled with tandem mass spectrometry to identify and characterize metabolites of ANT. We analyzed plasma of volunteers following a single intravenous administration of 100 mg of ANT mesylate and in in vitro cultures of human hepatocytes. We revealed that ANT was transformed into at least 15 metabolites and we investigated the role of cytochrome P450 isoforms. CYP2D6 was the main one involved in the fast metabolism of ANT. The biotransformation of ANT by CYP2C19 was much slower. The main Phase I metabolite was M1 formed by the removal of phenyl and metabolite M2 with hydroxyl in the para position of phenyl. Glucuronidation was the leading Phase II metabolism. Further study on pharmacokinetics of the metabolites would allow us to better understand the activity profile of ANT and to predict its potential clinical applications. Ultimately, further investigation of the activity profile of the new hydroxylated M2 metabolite of ANT might result in an active substance with a different pharmacological profile than the parent molecule, and potentially a new drug candidate.


Subject(s)
Antazoline/analysis , Antazoline/metabolism , Chromatography, Liquid/methods , Hepatocytes/metabolism , Tandem Mass Spectrometry/methods , Healthy Volunteers , Hepatocytes/cytology , Humans , In Vitro Techniques
14.
Bioorg Med Chem Lett ; 30(22): 127522, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32871268

ABSTRACT

Taking into account that multidrug resistance (MDR) is the main cause for chemotherapeutic failure in cancer treatment, the ability of novel histamine H3 receptor ligands to reverse the cancer MDR was evaluated, using the ABCB1 efflux pump inhibition assay in mouse MDR T-lymphoma cells. The most active compounds displayed significant cytotoxic and antiproliferative effects as well as a very potent MDR efflux pump inhibitory action, 3-5-fold stronger than that of reference inhibitor verapamil. Although these compounds possess weak antagonistic properties against histamine H3 receptors, they are valuable pharmacological tools in the search for novel anticancer molecules. Furthermore, for the most active compounds, an insight into mechanisms of action using either, the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp, was performed.


Subject(s)
Drug Resistance, Multiple/drug effects , Histamine H3 Antagonists/pharmacology , Piperazine/pharmacology , Receptors, Histamine H3/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/chemistry , Humans , Mice , Molecular Structure , Piperazine/analogs & derivatives , Piperazine/chemistry , Structure-Activity Relationship
15.
Eur J Med Chem ; 200: 112435, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32505850

ABSTRACT

Multidrug resistance (MDR) in cancer cells is a crucial aspect to consider for a successful cancer therapy. P-gp/ABCB1, a member of ABC transporters, is involved in the main tumour MDR mechanism, responsible for the efflux of drugs and cytotoxic substances. Herein, we describe a discovery of potent selenium-containing ABCB1 MDR efflux pump modulators with promising anticancer activity. On three groups of selenoethers comprehensive studies in terms of design, synthesis, and biological assays, including an insight into cellular mechanisms of anticancer action as well as an ADMET-screening in vitro were performed, followed by in-depth SAR analysis. Among the investigated new phenylselenoether hybrids, four compounds showed significant cytotoxic and anti-proliferative effects, in particular, in resistant cancer cells. Hydantoin derivatives (5-7) were significantly more effective than the reference inhibitor verapamil (up to 2.6-fold at a 10-fold lower concentration) modulating ABCB1-efflux pump, also possessing a good drug-drug interaction profile. The best compound (6) was further evaluated in human JURKAT T-lymphocytic cancer cells for its impact on cell proliferation rate. Mechanistically, the expression of cyclin D1, an enhancer of the cell cycle, decreases, while p53, an inhibitor of cell proliferation, was up-regulated upon the treatment with compound 6 alone or in combination with the chemotherapeutic agent doxorubicin. In summary, a new chemical space of highly active selenium-containing anticancer agents has been discovered, with a new lead compound 6 that warrants more in-depth biological evaluation and further pharmacomodulation.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Ethers/pharmacology , Hydantoins/pharmacology , Lymphoma, T-Cell/drug therapy , Organoselenium Compounds/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Ethers/chemistry , Hydantoins/chemistry , Lymphoma, T-Cell/metabolism , Mice , Molecular Structure , Organoselenium Compounds/chemistry , Structure-Activity Relationship
16.
Molecules ; 25(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403277

ABSTRACT

Multidrug resistance (MDR) is a severe problem in the treatment of cancer with overexpression of glycoprotein P (Pgp, ABCB1) as a reason for chemotherapy failure. A series of 14 novel 5-arylideneimidazolone derivatives containing the morpholine moiety, with respect to two different topologies (groups A and B), were designed and obtained in a three- or four-step synthesis, involving the Dimroth rearrangement. The new compounds were tested for their inhibition of the ABCB1 efflux pump in both sensitive (parental (PAR)) and ABCB1-overexpressing (MDR) T-lymphoma cancer cells in a rhodamine 123 accumulation assay. Their cytotoxic and antiproliferative effects were investigated by a thiazolyl blue tetrazolium bromide (MTT) assay. For active compounds, an insight into the mechanisms of action using either the luminescent Pgp-Glo™ Assay in vitro or docking studies to human Pgp was performed. The safety profile in vitro was examined. Structure-activity relationship (SAR) analysis was discussed. The most active compounds, representing both 2-substituted- (11) and Dimroth-rearranged 3-substituted (18) imidazolone topologies, displayed 1.38-1.46 fold stronger efflux pump inhibiting effects than reference verapamil and were significantly safer than doxorubicin in cell-based toxicity assays in the HEK-293 cell line. Results of mechanistic studies indicate that active imidazolones are substrates with increasing Pgp ATPase activity, and their dye-efflux inhibition via competitive action on the Pgp verapamil binding site was predicted in silico.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Imidazoles/chemistry , Imidazoles/pharmacology , Lymphoma, T-Cell/metabolism , ATP Binding Cassette Transporter, Subfamily B/chemistry , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/pharmacology , Drug Resistance, Multiple/genetics , Humans , Imidazoles/chemical synthesis , In Vitro Techniques , Inhibitory Concentration 50 , Lymphoma, T-Cell/enzymology , Lymphoma, T-Cell/genetics , Mice , Models, Molecular , Molecular Docking Simulation , Morpholines/chemistry , Rhodamine 123/metabolism , Structure-Activity Relationship , Verapamil/pharmacology
17.
Medchemcomm ; 9(6): 951-962, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-30108984

ABSTRACT

A library of 27 novel amide derivatives of annelated xanthines was designed and synthesized. The new compounds represent 1,3-dipropyl- and 1,3-dibutyl-pyrimido[2,1-f]purinedione-9-ethylphenoxy derivatives including a CH2CONH linker between the (CH2)2-amino group and the phenoxy moiety. A synthetic strategy to obtain the final products was developed involving solvent-free microwave irradiation. The new compounds were evaluated for their adenosine receptor (AR) affinities. The most potent derivatives contained a terminal tertiary amino function. Compounds with nanomolar AR affinities and at the same time high water-solubility were obtained (A1 (Ki = 24-605 nM), A2A (Ki = 242-1250 nM), A2B (Ki = 66-911 nM) and A3 (Ki = 155-1000 nM)). 2-(4-(2-(1,3-Dibutyl-2,4-dioxo-1,2,3,4,7,8-hexahydropyrimido[2,1-f]purin-9(6H)-yl)ethyl)phenoxy)-N-(3-(diethylamino)propyl)acetamide (27) and the corresponding N-(2-(pyrrolidin-1-yl)ethyl)acetamide (36) were found to be the most potent antagonists of the present series. While 27 showed CYP inhibition and moderate metabolic stability, 36 was found to possess suitable properties for in vivo applications. In an attempt to explain the affinity data for the synthesized compounds, molecular modeling and docking studies were performed using homology models of A1 and A2A adenosine receptors. The potent compound 36 was used as an example for discussion of the possible ligand-protein interactions. Moreover, the compounds showed high water-solubility indicating that the approach of introducing a basic side chain was successful for the class of generally poorly soluble AR antagonists.

18.
Anal Chim Acta ; 1028: 1-10, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-29884345

ABSTRACT

Efficient and reliable analysis of chemical analytical data is a great challenge due to the increase in data size, variety and velocity. New methodologies, approaches and methods are being proposed not only by chemometrics but also by other data scientific communities to extract relevant information from big datasets and provide their value to different applications. Besides common goal of big data analysis, different perspectives and terms on big data are being discussed in scientific literature and public media. The aim of this comprehensive review is to present common trends in the analysis of chemical analytical data across different data scientific fields together with their data type-specific and generic challenges. Firstly, common data science terms used in different data scientific fields are summarized and discussed. Secondly, systematic methodologies to plan and run big data analysis projects are presented together with their steps. Moreover, different analysis aspects like assessing data quality, selecting data pre-processing strategies, data visualization and model validation are considered in more detail. Finally, an overview of standard and new data analysis methods is provided and their suitability for big analytical chemical datasets shortly discussed.

19.
Eur J Med Chem ; 138: 874-883, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28738307

ABSTRACT

In order to map out molecular determinants for the competitive blockade of AMPA receptor subtypes, a series of racemic aryl-substituted phenylalanines was synthesized and pharmacologically characterized in vitro at native rat ionotropic glutamate receptors. Most of the compounds showed micromolar affinity and preference for AMPA receptors. Individual stereoisomers of selected compounds were further evaluated at recombinant homomeric rat GluA2 and GluA3 receptors. The most potent compound, (-)-2-amino-3-(6-chloro-2',5'-dihydroxy-5-nitro-[1,1'-biphenyl]-3-yl)propanoic acid, the expected R-isomer showing Ki of 1.71 µM at the GluA2 subtype, was found to competitively antagonize GluA2(Q)i receptors in TEVC electrophysiological experiments (Kb = 2.13 µM). Molecular docking experiments allowed us to compare two alternative antagonist binding modes for the synthesized phenylalanines at the GluA2 binding core, showing the direction for further structural modifications.


Subject(s)
Phenylalanine/pharmacology , Receptors, AMPA/antagonists & inhibitors , Animals , Binding Sites/drug effects , Dose-Response Relationship, Drug , Models, Molecular , Molecular Structure , Phenylalanine/chemical synthesis , Phenylalanine/chemistry , Rats , Structure-Activity Relationship
20.
Chem Biol Drug Des ; 90(6): 1271-1281, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28636281

ABSTRACT

A series of racemic unnatural amino acids was rationally designed on the basis of recently published X-ray structures of the GluA2 LBD with bound phenylalanine-based antagonists. Twelve new diaryl- or aryl/heteroaryl-substituted phenylalanine derivatives were synthesized and evaluated in vitro in radioligand binding assays at native rat ionotropic glutamate receptors. The most interesting compound in this series, (RS)-2-amino-3-(3'-hydroxy-5-(1H-pyrazol-4-yl)-[1,1'-biphenyl]-3-yl)propanoic acid 7e, showed the binding affinity of 4.6 µm for native AMPA receptors and over fourfold lower affinity for kainic acid receptors. Furthermore, 7e was evaluated at recombinant homomeric rat GluA2 and GluA3 receptors. Recently reported X-ray structures 5CBR and 5CBS, representing two distinct antagonist binding modes, were used as templates for molecular docking of the synthesized series. Binding data supported with molecular modeling confirmed that aryl/heteroaryl-substituted phenylalanine analogues effectively bind to AMPA receptors with low micromolar affinity and high selectivity over native NMDA and kainate receptors. These properties make 7e a promising lead for the further development of new AMPA receptor ligands.


Subject(s)
Phenylalanine/metabolism , Receptors, AMPA/metabolism , Animals , Binding Sites , Brain/metabolism , Crystallography, X-Ray , Ligands , Molecular Conformation , Phenylalanine/analogs & derivatives , Protein Structure, Tertiary , Rats , Receptors, AMPA/chemistry , Receptors, AMPA/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...