Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(11): 11D503, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910640

ABSTRACT

The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters.

2.
Phys Rev Lett ; 96(25): 253201, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16907303

ABSTRACT

By implementing a large-area, gain-stabilized microcalorimeter array on an electron beam ion trap, the electron-impact excitation cross sections for the dominant x-ray lines in the Fe XVII spectrum have been measured as a function of electron energy establishing a benchmark for atomic calculations. The results show that the calculations consistently predict the cross section of the resonance line to be significantly larger than measured. The lower cross section accounts for several problems found when modeling solar and astrophysical Fe XVII spectra.

3.
Magn Reson Med ; 48(2): 351-61, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12210944

ABSTRACT

The quantification of perfusion using dynamic susceptibility contrast MRI (DSC-MRI) requires deconvolution to obtain the residual impulse response function (IRF). In this work, a method using the Gaussian process for deconvolution (GPD) is proposed. The fact that the IRF is smooth is incorporated as a constraint in the method. The GPD method, which automatically estimates the noise level in each voxel, has the advantage that model parameters are optimized automatically. The GPD is compared to singular value decomposition (SVD) using a common threshold for the singular values, and to SVD using a threshold optimized according to the noise level in each voxel. The comparison is carried out using artificial data as well as data from healthy volunteers. It is shown that GPD is comparable to SVD with a variable optimized threshold when determining the maximum of the IRF, which is directly related to the perfusion. GPD provides a better estimate of the entire IRF. As the signal-to-noise ratio (SNR) increases or the time resolution of the measurements increases, GPD is shown to be superior to SVD. This is also found for large distribution volumes.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Imaging/methods , Contrast Media , Gadolinium DTPA , Humans , Image Processing, Computer-Assisted , Normal Distribution
4.
Appl Opt ; 35(34): 6629-40, 1996 Dec 01.
Article in English | MEDLINE | ID: mdl-21151241

ABSTRACT

We constructed a 24-pixel bolometer camera operating in the 350- and 450-µm atmospheric windows for the Caltech Submillimeter Observatory (CSO). This instrument uses a monolithic silicon bolometer array that is cooled to approximately 300 mK by a single-shot (3)He refrigerator. First-stage amplification is provided by field-effect transistors at approximately 130 K. The sky is imaged onto the bolometer array by means of several mirrors outside the Dewar and a cold off-axis elliptical mirror inside the cryostat. The beam is defined by cold aperture and field stops, which eliminates the need for any condensing horns. We describe the instrument, present measurements of the physical properties of the bolometer array, describe the performance of the electronics and the data-acquisition system, and demonstrate the sensitivity of the instrument operating at the observatory. Approximate detector noise at 350 µm is 5 × 10(-15) W/√Hz, referenced to the entrance of the Dewar, and the CSO system noise-equivalent flux density is approximately 4 Jy/√Hz. These values are within a factor of 2.5 of the background limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...