Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(10): e30943, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38799752

ABSTRACT

SnO2 and tantalum doped SnO2 (TTO) thin films were prepared using reactive hollow cathode gas flow sputtering (GFS) on glass substrates. An in-situ heating process under vacuum preceded the sputtering. The resistivity of the tin oxide films was reduced to a remarkable low of 2.02 × 10-3 Ω cm, with a carrier concentration of 2.55 × 1020 cm-3 and a mobility of 12.11 cm2V-1s-1. As the substrate temperature increased, the film resistivity decreased. Notably, at a substrate temperature of 270 °C, the effect of Ta doping on the film resistivity and carrier concentration was significantly stronger compared to higher temperatures. Elevating the substrate temperature and Ta doping resulted in a lower refractive index (n). This effect was consistently strong at higher temperatures, attributed to the higher film-free carrier concentration (4.54 × 1020 cm-3) compared to lower temperatures (2.35 × 1020 cm-3). The film's structure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscope (AFM). The preferred direction of film growth was discussed. The successful and reproducible fabrication of tin oxide films underscores the advantages of gas flow sputtering (GFS) technology. GFS offers stable operating conditions across various oxygen flow levels without requiring target oxidization control, as is required in magnetron sputtering when managing gas status and film quality.

2.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37436119

ABSTRACT

Gas flow sputtering is a sputter deposition method that enables soft and high-rate deposition even for oxides or nitrides at high pressure (in the mbar range). A unipolar pulse generator with adjustable reverse voltage was used to optimize thin film growth by the hollow cathode gas flow sputtering system. In this regard, we describe our laboratory Gas Flow Sputtering (GFS) deposition system, which has been recently assembled at the Technical University of Berlin. Its technical facilities and suitability for various technological tasks are explored. The first experimental efforts are presented by the example of TiOx films on glass substrates obtained at various deposition conditions with forced Argon flow. The influence of pulsing parameters, power, and oxygen gas flow on the plasma generated is studied. The films were characterized by ellipsometry, scanning electron microscopy, x-ray diffraction, and x-ray reflectivity. Optical Emission Spectroscopy (OES) was also used to characterize the remote plasma, and the substrate temperature was measured. The pulsing frequency (f) is a significant factor that provides additional substrate heating by about 100 °C when the plasma regime changes from f = 0 (DC) to 100 kHz. Such a change in frequency provides a significant increase in the OES signals of Ti and Ar neutrals as well as of Ti+ ions. With pulsed operation at high power, the GFS plasma is capable of heating the glass substrate to more than 400 °C within several minutes, which allows for crystalline anatase TiOx film deposition without external heating. For deposition below 200 °C substrate temperature, low power DC operation can be used.

3.
Chemphyschem ; 24(14): e202200650, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37159221

ABSTRACT

A single step deposition technique of Pt/C films for electrocatalytic applications is presented. The hollow cathode gas flow sputtering (GFS) method allows a catalyst production within few minutes without further steps. The herein presented films consist of small Pt nanocrystals (2-5 nm) deposited in a matrix of nanocrystalline carbon. The films show a low and stable overpotential under acidic conditions in the hydrogen evolution reaction (HER). Relatively low Pt-mass activity (<1 mA/µgPt ) is attributed to the yet too high Pt-content in the films. Another issue discovered in this work is a non-graphitic state of carbon resulting in its high resistivity. Still, the GFS deposition technique providing by nature high deposition rates and a substance-to-material yield of 80-90 % is advantageous than other sputtering techniques and especially chemical methods in that sense. This technique is scalable to areas in the range of square meters and thus represents an attractive way to efficiently produce large-scale cathode coatings for industrial electrolysers.

4.
Phys Chem Chem Phys ; 23(15): 9476-9482, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33885067

ABSTRACT

Formamidinium lead iodide (FAPbI3) can be used in its cubic, black form as a light absorber material in single-junction solar cells. It has a band-gap (1.5 eV) close to the maximum of the Shockley-Queisser limit, and reveals a high absorption coefficient. Its high thermal stability up to 320 °C has also a downside, which is the instability of the photo-active form at room temperature (RT). Thus, the black α-phase transforms at RT with time into a yellow non-photo-active δ-phase. The black phase can be recovered by annealing of the yellow state. In this work, a polymorphism of the α-phase at room temperature was found: as-synthesized (αi), degraded (αδ) and thermally recovered (αrec). They differ in the Raman spectra and PL signal, but not in the XRD patterns. Using temperature-dependent Raman spectroscopy, we identified a structural change in the αi-polymorph at ca. 110 °C. Above 110 °C, the FAPbI3 structure has undoubtedly cubic Pm3[combining macron]m symmetry (high-temperature phase: αHT). Below that temperature, the αi-phase was suggested to have a distorted perovskite structure with Im3[combining macron] symmetry. Thermally recovered FAPbI3 (αrec) also demonstrated the structural transition to αHT at the same temperature (ca. 110 °C) during its heating. The understanding of hybrid perovskites may bring additional assets in the development of new and stable structures.

5.
Nanomaterials (Basel) ; 11(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546135

ABSTRACT

The past decade has seen enormous efforts in the investigation and development of reduced graphene oxide (GO) and its applications. Reduced graphene oxide (rGO) derived from GO is known to have relatively inferior electronic characteristics when compared to pristine graphene. Yet, it has its significance attributed to high-yield production from inexpensive graphite, ease of fabrication with solution processing, and thus a high potential for large-scale applications and commercialization. Amongst several available approaches for GO reduction, the mature use of plasma technologies is noteworthy. Plasma technologies credited with unique merits are well established in the field of nanotechnology and find applications across several fields. The use of plasma techniques for GO development could speed up the pathway to commercialization. In this report, we review the state-of-the-art status of plasma techniques used for the reduction of GO-films. The strength of various techniques is highlighted with a summary of the main findings in the literature. An analysis is included through the prism of chemistry and plasma physics.

6.
Phys Chem Chem Phys ; 22(10): 5604-5614, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32100759

ABSTRACT

Lead halide perovskite semiconductors providing record efficiencies of solar cells have usually mixed compositions doped in A- and X-sites to enhance the phase stability. The cubic form of formamidinium (FA) lead iodide reveals excellent opto-electronic properties but transforms at room temperature (RT) into a hexagonal structure which does not effectively absorb visible light. This metastable form and the mechanism of its stabilization by Cs+ and Br- incorporation are poorly characterized and insufficiently understood. We report here the vibrational properties of cubic FAPbI3 investigated by DFT calculations on phonon frequencies and intensities, and micro-Raman spectroscopy. The effects of Cs+ and Br- partial substitution are discussed. We support our results with the study of FAPbBr3 which expands the identification of vibrational modes to the previously unpublished low frequency region (<500 cm-1). Our results show that the incorporation of Cs+ and Br- leads to the coupling of the displacement of the A-site components and weakens the bonds between FA+ and the PbX6 octahedra. We suggest that the enhancement of α-FAPbI3 stability can be a product of the release of tensile stresses in the Pb-X bond, which is reflected in a red-shift of the low frequency region of the Raman spectrum (<200 cm-1).

7.
Materials (Basel) ; 12(2)2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30650608

ABSTRACT

The crystallisation of sputter-deposited, amorphous In2O3:H films was investigated. The influence of deposition and crystallisation parameters onto crystallinity and electron hall mobility was explored. Significant precipitation of metallic indium was discovered in the crystallised films by electron energy loss spectroscopy. Melting of metallic indium at ~160 °C was suggested to promote primary crystallisation of the amorphous In2O3:H films. The presence of hydroxyl was ascribed to be responsible for the recrystallization and grain growth accompanying the inter-grain In-O-In bounding. Metallic indium was suggested to provide an excess of free electrons in as-deposited In2O3 and In2O3:H films. According to the ultraviolet photoelectron spectroscopy, the work function of In2O3:H increased during crystallisation from 4 eV to 4.4 eV, which corresponds to the oxidation process. Furthermore, transparency simultaneously increased in the infraredspectral region. Water was queried to oxidise metallic indium in UHV at higher temperature as compared to oxygen in ambient air. Secondary ion mass-spectroscopy results revealed that the former process takes place mostly within the top ~50 nm. The optical band gap of In2O3:H increased by about 0.2 eV during annealing, indicating a doping effect. This was considered as a likely intra-grain phenomenon caused by both (In°)O•• and (OH-)O• point defects. The inconsistencies in understanding of In2O3:H crystallisation, which existed in the literature so far, were considered and explained by the multiplicity and disequilibrium of the processes running simultaneously.

SELECTION OF CITATIONS
SEARCH DETAIL
...