Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762298

ABSTRACT

Tumors are intricate ecosystems where cancer cells and non-malignant stromal cells, including cancer-associated fibroblasts (CAFs), engage in complex communication. In this study, we investigated the interaction between poorly (HLE) and well-differentiated (HuH7) hepatoma cells and LX2 fibroblasts. We explored various communication channels, including soluble factors, metabolites, extracellular vesicles (EVs), and miRNAs. Co-culture with HLE cells induced LX2 to produce higher levels of laminin ß1, type IV collagen, and CD44, with pronounced syndecan-1 shedding. Conversely, in HuH7/LX2 co-culture, fibronectin, thrombospondin-1, type IV collagen, and cell surface syndecan-1 were dominant matrix components. Integrins α6ß4 and α6ß1 were upregulated in HLE, while α5ß1 and αVß1 were increased in HuH7. HLE-stimulated LX2 produced excess MMP-2 and 9, whereas HuH7-stimulated LX2 produced excess MMP-1. LX2 activated MAPK and Wnt signaling in hepatoma cells, and conversely, hepatoma-derived EVs upregulated MAPK and Wnt in LX2 cells. LX2-derived EVs induced over tenfold upregulation of SPOCK1/testican-1 in hepatoma EV cargo. We also identified liver cancer-specific miRNAs in hepatoma EVs, with potential implications for early diagnosis. In summary, our study reveals tumor type-dependent communication between hepatoma cells and fibroblasts, shedding light on potential implications for tumor progression. However, the clinical relevance of liver cancer-specific miRNAs requires further investigation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Syndecan-1 , Collagen Type IV , Ecosystem , Liver Neoplasms/genetics , Fibroblasts , Communication , Proteoglycans
2.
Drug Metab Dispos ; 51(8): 982-994, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37208186

ABSTRACT

Variation in the methodology of in vitro transporter inhibition assays causes wide divergence in reported IC50/Ki data. Notably, although potentiation of transporter inhibition by preincubation (PTIP) has been described, current guidelines do not specifically recommend inhibitor preincubation; they only encourage sponsors to follow emerging literature. To clarify how generally preincubation should be considered in transporter inhibition studies and whether PTIP can be solely explained by protein binding of the respective inhibitors, we performed in vitro inhibition assays on solute carrier (SLC) and ATP-binding cassette transporters scarcely or not covered in prior research and examined the effect of extracellular protein in preincubation and washout experiments. In SLC assays without extracellular protein, a 30-minute preincubation caused significant > twofold change of IC50 in 21/33 transporter-inhibitor combinations involving 19 evolutionarily disparate transporters. The preincubation effect correlated with inhibitor properties like protein binding and aqueous solubility. In vesicular transport assays of multidrug resistance protein 1, breast cancer resistance protein, multidrug resistance-associated protein 2, and bile salt export pump, sizable PTIP was observed for only 2/23 combinations, and preincubation was practically inconsequential in breast cancer resistance protein or multidrug resistance protein 1 monolayer assays. In SLC assays, PTIP partly persisted in the presence of 5% albumin, indicating that the absence of extracellular protein does not fully explain PTIP. The presence of protein, however, complicated the interpretation of results. Overall, while preincubating without protein may overpredict inhibitory potency, adding protein compromises clarity, and omitting preincubation altogether may miss clinically relevant inhibitors. Therefore, we propose that protein-free preincubation should be considered in all SLC inhibition assays. ATP-binding cassette transporter inhibition seems less commonly affected by preincubation, but conclusions require further investigation. SIGNIFICANCE STATEMENT: Drugs may inhibit transporter proteins in the body, which may precipitate drug interactions. In vitro transporter inhibition assays help predict such drug interactions. Some inhibitors act more potently when preincubated with the transporter prior to the assay. Here we argue that this effect is not a mere in vitro artifact due to the lack of plasma proteins and should be considered in all uptake inhibition assays to model the worst-case scenario. Preincubation in efflux transporter inhibition assays is likely dispensable.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Breast Neoplasms , Humans , Female , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Neoplasm Proteins/metabolism , Membrane Transport Proteins/metabolism , ATP-Binding Cassette Transporters/metabolism
3.
EMBO J ; 41(14): e108739, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35678476

ABSTRACT

Red blood cells are produced by terminal erythroid differentiation, which involves the dramatic morphological transformation of erythroblasts into enucleated reticulocytes. Microtubules are important for enucleation, but it is not known if the centrosome, a key microtubule-organizing center, is required as well. Mice lacking the conserved centrosome component, CDK5RAP2, are likely to have defective erythroid differentiation because they develop macrocytic anemia. Here, we show that fetal liver-derived, CDK5RAP2-deficient erythroid progenitors generate fewer and larger reticulocytes, hence recapitulating features of macrocytic anemia. In erythroblasts, but not in embryonic fibroblasts, loss of CDK5RAP2 or pharmacological depletion of centrosomes leads to highly aberrant spindle morphologies. Consistent with such cells exiting mitosis without chromosome segregation, tetraploidy is frequent in late-stage erythroblasts, thereby giving rise to fewer but larger reticulocytes than normal. Our results define a critical role for CDK5RAP2 and centrosomes in spindle formation specifically during blood production. We propose that disruption of centrosome and spindle function could contribute to the emergence of macrocytic anemias, for instance, due to nutritional deficiency or exposure to chemotherapy.


Subject(s)
Anemia, Macrocytic , Spindle Apparatus , Animals , Cell Cycle Proteins/genetics , Centrosome , Chromosome Segregation , Mice , Microtubules , Mitosis , Spindle Apparatus/genetics
4.
Am J Physiol Cell Physiol ; 323(2): C289-C294, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35704700

ABSTRACT

Syndecan-1 (SDC-1) is a heparan sulfate (HS)/chondroitin sulfate proteoglycan (PG) of the cell surface and the extracellular matrix (ECM), which regulates a broad spectrum of physiological and pathological processes such as cell proliferation, migration, inflammation, matrix remodeling, wound healing, and tumorigenesis. Syndecan-1 represents the major PG of the liver, expressed by hepatocytes and cholangiocytes, and its elevated expression is a characteristic feature of liver diseases. The highest syndecan-1 expression is found in liver cirrhosis and in hepatocellular carcinoma (HCC) developed in cirrhotic livers. In addition, as being a hepatitis C receptor, hepatitis C virus (HCV)-infected livers produce extremely large amounts of syndecan-1. The serum levels of the cleaved (shedded) extracellular domain have clinical significance, as their increased concentration reflects on poor prognosis in cirrhosis as well as in cancer. In vivo experiments confirmed that syndecan-1 protects against early stages of fibrogenesis mainly by enhanced clearance of transforming growth factor ß1 (TGFß1) and thrombospondin-1 (THBS1) via circulation, and against hepatocarcinogenesis by interfering with several signaling pathways and enhancing cell cycle blockade. In addition, syndecan-1 is capable to hinder lipid metabolism and ribosomal biogenesis in induced cancer models. These observations together with its participation in the uptake of viruses (e.g., HCV and SARS-CoV-2) indicate that syndecan-1 is a central player in liver pathologies.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Liver , Syndecan-1 , Humans , Liver/physiopathology , Proteoglycans/metabolism , Syndecan-1/genetics , Syndecan-1/metabolism
5.
Am J Physiol Cell Physiol ; 322(4): C688-C693, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35235422

ABSTRACT

SPOCK1, 2, and 3 are considered matricellular proteoglycans without a structural role. Their functions are only partly elucidated. SPOCK1 was detected in the brain as a member of the neural synapses, then in the neuromuscular junctions. It plays a role in the regulation of the blood-brain barrier. Its best-characterized activity was its oncogenic potential discovered in 2012. Its deleterious effect on tumor progression was detected on 36 different types of tumors by the end of 2020. However, its mode of action is still not completely understood. Furthermore, even less was discovered about its physiological function. The fact that it was found to localize in the mitochondria and interfered with the lipid metabolism indicated that the full discovery of SPOCK1 is still waiting for us.


Subject(s)
Carcinogenesis , Proteoglycans , Cell Line, Tumor , Humans , Proteoglycans/genetics , Proteoglycans/metabolism
6.
Pharmaceutics ; 15(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36678658

ABSTRACT

Bile acids and bile salts (BA/BS) are substrates of both influx and efflux transporters on hepatocytes. Canalicular efflux transporters, such as BSEP and MRP2, are crucial for the removal of BA/BS to the bile. Basolateral influx transporters, such as NTCP, OATP1B1/1B3, and OSTα/ß, cooperate with canalicular transporters in the transcellular vectorial flux of BA/BS from the sinusoids to the bile. The blockage of canalicular transporters not only impairs the bile flow but also causes the intracellular accumulation of BA/BS in hepatocytes that contributes to, or even triggers, liver injury. In the case of BA/BS overload, the efflux of these toxic substances back to the blood via MRP3, MRP4, and OST α/ß is considered a relief function. FXR, a key regulator of defense against BA/BS toxicity suppresses de novo bile acid synthesis and bile acid uptake, and promotes bile acid removal via increased efflux. In drug development, the early testing of the inhibition of these transporters, BSEP in particular, is important to flag compounds that could potentially inflict drug-induced liver injury (DILI). In vitro test systems for efflux transporters employ membrane vesicles, whereas those for influx transporters employ whole cells. Additional in vitro pharmaceutical testing panels usually include cellular toxicity tests using hepatocytes, as well as assessments of the mitochondrial toxicity and accumulation of reactive oxygen species (ROS). Primary hepatocytes are the cells of choice for toxicity testing, with HepaRG cells emerging as an alternative. Inhibition of the FXR function is also included in some testing panels. The molecular weight and hydrophobicity of the drug, as well as the steady-state total plasma levels, may positively correlate with the DILI potential. Depending on the phase of drug development, the physicochemical properties, dosing, and cut-off values of BSEP IC50 ≤ 25-50 µM or total Css,plasma/BSEP IC50 ≥ 0.1 may be an indication for further testing to minimize the risk of DILI liability.

7.
Pharmaceutics ; 13(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204277

ABSTRACT

BACKGROUND: Serum urate (SU) levels in primates are extraordinarily high among mammals. Urate is a Janus-faced molecule that acts physiologically as a protective antioxidant but provokes inflammation and gout when it precipitates at high concentrations. Transporters play crucial roles in urate disposition, and drugs that interact with urate transporters either by intention or by accident may modulate SU levels. We examined whether in vitro transporter interaction studies may clarify and predict such effects. METHODS: Transporter interaction profiles of clinically proven urate-lowering (uricosuric) and hyperuricemic drugs were compiled from the literature, and the predictive value of in vitro-derived cut-offs like Cmax/IC50 on the in vivo outcome (clinically relevant decrease or increase of SU) was assessed. RESULTS: Interaction with the major reabsorptive urate transporter URAT1 appears to be dominant over interactions with secretory transporters in determining the net effect of a drug on SU levels. In vitro inhibition interpreted using the recommended cut-offs is useful at predicting the clinical outcome. CONCLUSIONS: In vitro safety assessments regarding urate transport should be done early in drug development to identify candidates at risk of causing major imbalances. Attention should be paid both to the inhibition of secretory transporters and inhibition or trans-stimulation of reabsorptive transporters, especially URAT1.

8.
Cancers (Basel) ; 13(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801718

ABSTRACT

Although syndecan-1 (SDC1) is known to be dysregulated in various cancer types, its implication in tumorigenesis is poorly understood. Its effect may be detrimental or protective depending on the type of cancer. Our previous data suggest that SDC1 is protective against hepatocarcinogenesis. To further verify this notion, human SDC1 transgenic (hSDC1+/+) mice were generated that expressed hSDC1 specifically in the liver under the control of the albumin promoter. Hepatocarcinogenesis was induced by a single dose of diethylnitrosamine (DEN) at an age of 15 days after birth, which resulted in tumors without cirrhosis in wild-type and hSDC1+/+ mice. At the experimental endpoint, livers were examined macroscopically and histologically, as well as by immunohistochemistry, Western blot, receptor tyrosine kinase array, phosphoprotein array, and proteomic analysis. Liver-specific overexpression of hSDC1 resulted in an approximately six month delay in tumor formation via the promotion of SDC1 shedding, downregulation of lipid metabolism, inhibition of the mTOR and the ß-catenin pathways, and activation of the Foxo1 and p53 transcription factors that lead to the upregulation of the cell cycle inhibitors p21 and p27. Furthermore, both of them are implicated in the regulation of intermediary metabolism. Proteomic analysis showed enhanced lipid metabolism, activation of motor proteins, and loss of mitochondrial electron transport proteins as promoters of cancer in wild-type tumors, inhibited in the hSDC1+/+ livers. These complex mechanisms mimic the characteristics of nonalcoholic steatohepatitis (NASH) induced human liver cancer successfully delayed by syndecan-1.

9.
Biomolecules ; 10(10)2020 09 23.
Article in English | MEDLINE | ID: mdl-32977498

ABSTRACT

Syndecan-1 is a transmembrane heparan sulfate proteoglycan which is indispensable in the structural and functional integrity of epithelia. Normal hepatocytes display strong cell surface expression of syndecan-1; however, upon malignant transformation, they may lose it from their cell surfaces. In this study, we demonstrate that re-expression of full-length or ectodomain-deleted syndecan-1 in hepatocellular carcinoma cells downregulates phosphorylation of ERK1/2 and p38, with the truncated form exerting an even stronger effect than the full-length protein. Furthermore, overexpression of syndecan-1 in hepatoma cells is associated with a shift of heparan sulfate structure toward a highly sulfated type specific for normal liver. As a result, cell proliferation and proteolytic shedding of syndecan-1 from the cell surface are restrained, which facilitates redifferentiation of hepatoma cells to a more hepatocyte-like phenotype. Our results highlight the importance of syndecan-1 in the formation and maintenance of differentiated epithelial characteristics in hepatocytes partly via the HGF/ERK/Ets-1 signal transduction pathway. Downregulation of Ets-1 expression alone, however, was not sufficient to replicate the phenotype of syndecan-1 overexpressing cells, indicating the need for additional molecular mechanisms. Accordingly, a reporter gene assay revealed the inhibition of Ets-1 as well as AP-1 transcription factor-induced promoter activation, presumably an effect of the heparan sulfate switch.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Proto-Oncogene Protein c-ets-1/genetics , Syndecan-1/genetics , Transcription Factor AP-1/genetics , Carcinoma, Hepatocellular/pathology , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Heparitin Sulfate/pharmacology , Hepatocyte Growth Factor/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Neoplasms/pathology , MAP Kinase Signaling System/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
10.
Adv Exp Med Biol ; 1272: 17-38, 2020.
Article in English | MEDLINE | ID: mdl-32845500

ABSTRACT

The tumor microenvironment plays a determining role in cancer development through a plethora of interactions between the extracellular matrix and tumor cells. Decorin is a prototype member of the SLRP family found in a variety of tissues and is expressed in the stroma of various forms of cancer. Decorin has gained recognition for its essential roles in inflammation, fibrotic disorders, and cancer, and due to its antitumor properties, it has been proposed to act as a "guardian from the matrix." Initially identified as a natural inhibitor of transforming growth factor-ß, soluble decorin is emerging as a pan-RTK inhibitor targeting a multitude of RTKs, including EGFR, Met, IGF-IR, VEGFR2, and PDGFR. Besides initiating signaling, decorin/RTK interaction can induce caveosomal internalization and receptor degradation. Decorin also triggers cell cycle arrest and apoptosis and evokes antimetastatic and antiangiogenic processes. In addition, as a novel regulatory mechanism, decorin was shown to induce conserved catabolic processes, such as endothelial cell autophagy and tumor cell mitophagy. Therefore, decorin is a promising candidate for combatting cancer, especially the cancer types heavily dependent on RTK signaling.


Subject(s)
Decorin , Neoplasms/metabolism , Tumor Microenvironment , Autophagy , Decorin/metabolism , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction
11.
Biomolecules ; 10(8)2020 08 18.
Article in English | MEDLINE | ID: mdl-32824864

ABSTRACT

Decorin, the prototype member of the small leucine-rich proteoglycan gene family of extracellular matrix (ECM) proteins, acts as a powerful tumor suppressor by inducing the p21Waf1/Cip1 cyclin-dependent kinase inhibitor, as well as through its ability to directly bind and block the action of several tyrosine kinase receptors. Our previous studies suggested that the lack of decorin promotes hepatic carcinogenesis in mice. Based on this, we set out to investigate whether excess decorin may protect against the liver metastases of colon carcinoma. We also analyzed the effect of decorin in tissue microarrays of human colon carcinoma liver metastasis and examined whether the tumor cells can directly influence the decorin production of myofibroblasts. In humans, low levels of decorin in the liver facilitated the development of colon carcinoma metastases in proportion with more aggressive phenotypes, indicating a possible antitumor action of the proteoglycan. In vitro, colon carcinoma cells inhibited decorin expression in LX2 hepatic stellate cells. Moreover, liver-targeted decorin delivery in mice effectively attenuated metastasis formation of colon cancer. Overexpressed decorin reduced the activity of multiple receptor tyrosine kinases (RTKs) including the epidermal growth factor receptor (EGFR), an important player in colorectal cancer (CRC) pathogenesis. Downstream of that, we observed weakened signaling of ERK1/2, PLCγ, Akt/mTOR, STAT and c-Jun pathways, while p38 MAPK/MSK/CREB and AMPK were upregulated culminating in enhanced p53 function. In conclusion, decorin may effectively inhibit metastatic tumor formation in the liver.


Subject(s)
Colorectal Neoplasms/pathology , Decorin/genetics , Decorin/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Animals , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/therapy , Decorin/administration & dosage , Down-Regulation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Male , Mice , Neoplasm Transplantation , Signal Transduction , Tissue Array Analysis , Tumor Microenvironment
12.
Pharmaceutics ; 12(8)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796590

ABSTRACT

Bilirubin, the end product of heme catabolism, is produced continuously in the body and may reach toxic levels if accumulates in the serum and tissues; therefore, a highly efficient mechanism evolved for its disposition. Normally, unconjugated bilirubin enters hepatocytes through the uptake transporters organic anion transporting polypeptide (OATP) 1B1 and 1B3, undergoes glucuronidation by the Phase II enzyme UDP glucuronosyltransferase 1A1 (UGT1A1), and conjugated forms are excreted into the bile by the canalicular export pump multidrug resistance protein 2 (MRP2). Any remaining conjugated bilirubin is transported back to the blood by MRP3 and passed on for uptake and excretion by downstream hepatocytes or the kidney. The bile salt export pump BSEP as the main motor of bile flow is indirectly involved in bilirubin disposition. Genetic mutations and xenobiotics that interfere with this machinery may impede bilirubin disposition and cause hyperbilirubinemia. Several pharmaceutical compounds are known to cause hyperbilirubinemia via inhibition of OATP1Bs, UGT1A1, or BSEP. Herein we briefly review the in vitro prediction methods that serve to identify drugs with a potential to induce hyperbilirubinemia. In vitro assays can be deployed early in drug development and may help to minimize late-stage attrition. Based on current evidence, drugs that behave as mono- or multispecific inhibitors of OATP1B1, UGT1A1, and BSEP in vitro are at risk of causing clinically significant hyperbilirubinemia. By integrating inhibition data from in vitro assays, drug serum concentrations, and clinical reports of hyperbilirubinemia, predictor cut-off values have been established and are provisionally suggested in this review. Further validation of in vitro readouts to clinical outcomes is expected to enhance the predictive power of these assays.

13.
Front Oncol ; 10: 645, 2020.
Article in English | MEDLINE | ID: mdl-32477937

ABSTRACT

Hepatocellular carcinoma (HCC) represents one of the most frequent type of primary liver cancers. Decorin, a small leucine-rich proteoglycan of the extracellular matrix, represents a powerful tumor cell growth and migration inhibitor by hindering receptor tyrosine kinases and inducing p21WAF1/CIP1. In this study, first we tested decorin expression in HCCs utilizing in silico data, as well as formalin fixed paraffin embedded tissue samples of HCC in a tissue microarray (TMA). In silico data revealed that DCN/SMA mRNA ratio is decreased in HCC compared to normal tissues and follows the staging of the disease. Among TMA samples, 52% of HCCs were decorin negative, 33% exhibited low, and 15% high decorin levels corroborating in silico results. In addition, applying conditioned media of hepatoma cells inhibited decorin expression in LX2 stellate cells in vitro. These results raise the possibility that decorin acts as a tumor suppressor in liver cancer and that is why its expression decreased in HCCs. To further test the protective role of decorin, the proteoglycan was overexpressed in a mouse model of hepatocarcinogenesis evoked by thioacetamide (TA). After transfection, the excessive proteoglycan amount was mainly detected in hepatocytes around the central veins. Upon TA-induced hepatocarcinogenesis, the highest tumor count was observed in mice with no decorin production. Decorin gene delivery reduced tumor formation, in parallel with decreased pEGFR, increased pIGF1R levels, and with concomitant induction of pAkt (T308) and phopho-p53, suggesting a novel mechanism of action. Our results suggest the idea that decorin can be utilized as an anti-cancer agent.

14.
Drug Metab Dispos ; 47(7): 768-778, 2019 07.
Article in English | MEDLINE | ID: mdl-31068368

ABSTRACT

Preincubation of a drug transporter with its inhibitor in a cell-based assay may result in the apparent enhancement of the inhibitory potency. Currently, limited data are available on potentiation of transporter inhibition by preincubation (PTIP) for clinically relevant solute-carrier transporters other than OATP1B1 and OATP1B3. Therefore, PTIP was examined systematically using OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, and MATE2-K cell lines. IC50 values of 30 inhibitors were determined with or without 3 hours of preincubation, and compounds with a PTIP ≥2.5× were further characterized by assessing the time course of transport inhibition potency and cellular concentration. For each compound, correlations were calculated between highest observed PTIP and physicochemical properties. PTIP was prevalent among organic cation transporters (OCTs) and organic anion-transporting polypeptides (OATPs) but not among organic anion transporters (OATs) or multidrug and toxin extrusion transporters (MATEs), and most instances of PTIP persisted after controlling for toxicity and nonspecific binding. Occasionally, preincubation in excess of 2 hours was required to attain full inhibitory potency. For four drugs examined, preincubation had the potential to change the in vitro drug-drug interaction risk prediction from "no risk" to "risk" on the basis of current regulatory criteria. Molecular weight and LogD7.4, as well as the ratio of passive cellular accumulation and cellular uptake rate correlated with PTIP; thus, low cellular permeation and a slow build-up of unbound intracellular inhibitor concentration may contribute to PTIP. Taken together, our data suggest that PTIP is partly determined by the physicochemical properties of the perpetrator drug, and preincubation may affect the in vitro predicted drug-drug interaction risk for OCTs as well as OATPs. SIGNIFICANCE STATEMENT: During the development of a novel pharmaceutical drug, in vitro studies are conducted to assess the risk of potential adverse interactions between existing medications a patient may already be taking and the novel compound. The exact way these in vitro assays are performed may influence the outcome of risk assessment. Here we suggest that the interaction risk may be underestimated unless specific assay protocols are modified to include an additional incubation step that allows the test drug to accumulate inside the cells, and demonstrate that adding this step is particularly important for large and hydrophobic drug molecules.


Subject(s)
Membrane Transport Proteins/metabolism , Cell Line , Drug Interactions , Humans , In Vitro Techniques , Membrane Transport Proteins/drug effects
15.
Exp Biol Med (Maywood) ; 243(12): 1014-1023, 2018 08.
Article in English | MEDLINE | ID: mdl-30111166

ABSTRACT

MiR-206 is a remarkable miRNA because it functions as a suppressor miRNA in rhabdomyosarcoma while at the same time, as previously showed, it can act as an oncomiRNA in SMARCB1 immunonegative soft tissue sarcomas. The aim of this study was to investigate the effect of miR-206 on its several target genes in various human tumorous and normal cell lines. In the current work, we created miR-206-overexpressing cell lines (HT-1080, Caco2, iASC, and SS-iASC) using permanent transfection. mRNA expression of the target genes of miR-206 (SMARCB1, ACTL6A, CCND1, POLA1, NOTCH3, MET, and G6PD) and SMARCB1 protein expression were examined with quantitative real-time polymerase chain reaction, immunoblotting, immunocytochemistry, and flow cytometry. MiRNA inhibition was used to validate our results. We found a diverse silencing effect of miR-206 on its target genes. While an overall tendency of downregulation was noted, expression profiles of individual cell lines showed large variability. Only CCND1 and MET were consistently downregulated. MiR-206 had an antiproliferative effect on a normal human fibroblast cell line. A strong silencing effect of SMARCB1 in miR-206 transfected SS-iASC was most likely caused by the synergic influence of the SS18-SSX1 fusion protein and miR-206. In the same cell line, a moderate decrease of SMARCB1 protein expression could be observed with immunocytochemistry and flow cytometry. In the most comprehensive analysis of miR-206 effects so far, a modest but significant downregulation of miR-206 targets on the mRNA level was confirmed across all cell lines. However, the variability of the effect shows that the action of this miRNA is largely cell context-dependent. Our results also support the conception that the oncomiR effect of miR-206 on SMARCB1 plays an important but not exclusive role in SMARCB1 immunonegative soft tissue sarcomas so it can be considered important in planning the targeted therapy of these tumors in the future. Impact statement Mir-206 is a very unique microRNA because it can act as a suppressor miRNA or as an oncomiRNA depending on the tumor tissue. In SMARCB1 negative soft tissue sarcomas miR-206 is overexpressed, so thus in epithelioid and synovial sarcomas it functions as an oncomiRNA. MiR-206 has diverse silencing effects on its target genes. We found that the action of miR-206 is largely cell context dependent. The oncomiR role of miR-206 is crucial but not exclusive in SMARCB1 negative soft tissue sarcomas and miR-206 has an antiproliferative effect on a normal human fibroblast cell line. Expressions of miR-206 targets observed in tumors can only be reproduced in the corresponding tumorous cell lines. This is the first study which examined the permanent effect of miR-206 on its target genes in normal, tumor, and genetically engineered cell lines.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Rhabdomyosarcoma/genetics , Transfection , Caco-2 Cells , Cell Line, Tumor , Down-Regulation , Epigenesis, Genetic , Fibroblasts/metabolism , Gene Expression Profiling , Gene Silencing , Humans , Immunohistochemistry , Rhabdomyosarcoma/drug therapy , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Sarcoma/drug therapy , Sarcoma/genetics , Signal Transduction
16.
Cancer Genet ; 216-217: 52-60, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29025595

ABSTRACT

The SS18-SSX chimeric gene is unique to synovial sarcoma. Multiple model systems including mouse cell lines expressing SS18-SSX, and genetically engineered mouse models of synovial sarcoma have been developed to elucidate the role of the chimeric gene in synovial sarcomagenesis. Although several cell lines stably expressing human SS18-SSX exist, there is an ongoing need for cell culture models enabling researchers to investigate the molecular mechanism of SS18-SSX action in a relevant cellular context. Here we report the establishment of a novel SS18-SSX1-expressing cell line created from immortalized human adipose tissue-derived mesenchymal stem cells via lentiviral transduction of the chimeric gene. Our cell line, termed SS-iASC, has been characterized by karyotyping and cell line identification, and stable expression of SS18-SSX1 has been verified using real-time PCR (RT-PCR), nested PCR, immunofluorescence, and immunoblotting. Focal cytokeratin positivity characteristic of synovial sarcoma but no ß-Catenin, Bcl-2 or cyclin D1 expression was observed in SS-iASC. The novel cell line expressing SS18-SSX1 on a human adipose-derived stromal cell background is expected to be helpful in addressing the question whether the chimeric gene alone is sufficient to trigger the formation of synovial sarcoma.


Subject(s)
Adipose Tissue/cytology , Mesenchymal Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Adult , Cell Line, Transformed , Clone Cells , Female , Gene Expression Regulation , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Karyotyping , Mesenchymal Stem Cells/cytology , Oncogene Proteins, Fusion/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Nat Commun ; 7: 11005, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26987684

ABSTRACT

Numerical centrosome aberrations underlie certain developmental abnormalities and may promote cancer. A cell maintains normal centrosome numbers by coupling centrosome duplication with segregation, which is achieved through sustained association of each centrosome with a mitotic spindle pole. Although the microcephaly- and primordial dwarfism-linked centrosomal protein CEP215 has been implicated in this process, the molecular mechanism responsible remains unclear. Here, using proteomic profiling, we identify the minus end-directed microtubule motor protein HSET as a direct binding partner of CEP215. Targeted deletion of the HSET-binding domain of CEP215 in vertebrate cells causes centrosome detachment and results in HSET depletion at centrosomes, a phenotype also observed in CEP215-deficient patient-derived cells. Moreover, in cancer cells with centrosome amplification, the CEP215-HSET complex promotes the clustering of extra centrosomes into pseudo-bipolar spindles, thereby ensuring viable cell division. Therefore, stabilization of the centrosome-spindle pole interface by the CEP215-HSET complex could promote survival of cancer cells containing supernumerary centrosomes.


Subject(s)
Centrosome/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Kinesins/metabolism , Neoplasms/metabolism , Nerve Tissue Proteins/metabolism , Spindle Poles/metabolism , Animals , Cell Cycle Proteins , Cell Line , Chickens , Cluster Analysis , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Kinesins/chemistry , Mice , Mutation/genetics , Nerve Tissue Proteins/chemistry , Protein Binding , Protein Interaction Maps , Protein Structure, Tertiary
18.
World J Gastroenterol ; 22(1): 379-93, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26755884

ABSTRACT

Proteoglycans are a group of molecules that contain at least one glycosaminoglycan chain, such as a heparan, dermatan, chondroitin, or keratan sulfate, covalently attached to the protein core. These molecules are categorized based on their structure, localization, and function, and can be found in the extracellular matrix, on the cell surface, and in the cytoplasm. Cell-surface heparan sulfate proteoglycans, such as syndecans, are the primary type present in healthy liver tissue. However, deterioration of the liver results in overproduction of other proteoglycan types. The purpose of this article is to provide a current summary of the most relevant data implicating proteoglycans in the development and progression of human and experimental liver cancer. A review of our work and other studies in the literature indicate that deterioration of liver function is accompanied by an increase in the amount of chondroitin sulfate proteoglycans. The alteration of proteoglycan composition interferes with the physiologic function of the liver on several levels. This article details and discusses the roles of syndecan-1, glypicans, agrin, perlecan, collagen XVIII/endostatin, endocan, serglycin, decorin, biglycan, asporin, fibromodulin, lumican, and versican in liver function. Specifically, glypicans, agrin, and versican play significant roles in the development of liver cancer. Conversely, the presence of decorin could potentially provide protective effects.


Subject(s)
Liver Neoplasms/metabolism , Proteoglycans/metabolism , Agrin/metabolism , Animals , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/metabolism , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Glypicans/metabolism , Heparan Sulfate Proteoglycans/chemistry , Heparan Sulfate Proteoglycans/metabolism , Humans , Liver Neoplasms/etiology , Liver Neoplasms, Experimental/etiology , Liver Neoplasms, Experimental/metabolism , Proteoglycans/chemistry , Syndecan-1/metabolism , Versicans/metabolism
19.
Br J Cancer ; 113(5): 693-8, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26180922

ABSTRACT

Despite the growing number of therapies that target cancer-specific pathways, cytotoxic treatments remain important clinical tools. The rationale for targeting cell proliferation by chemotherapeutic agents stems from the assumption that tumours harbour a greater fraction of actively dividing cells than normal tissues. One such group of cytotoxic drugs impair microtubule polymers, which are cytoskeletal components of cells essential for many processes including mitosis. However, in addition to their antimitotic action, these agents cause debilitating and dose-limiting neurotoxicity because of the essential functions of microtubules in neurons. To overcome this limitation, drugs against mitosis-specific targets have been developed over the past decade, albeit with variable clinical success. Here we review the key lessons learnt from antimitotic therapies with a focus on inhibitors of microtubule motor proteins. Furthermore, based on the cancer genome data, we describe a number of motor proteins with tumour type-specific alterations, which warrant further investigation in the quest for cytotoxic targets with increased cancer specificity.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Tubulin Modulators/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Humans , Kinesins/antagonists & inhibitors , Kinesins/physiology , Microtubules/metabolism , Mitosis/drug effects , Molecular Targeted Therapy , Tubulin Modulators/therapeutic use
20.
Pathol Oncol Res ; 20(3): 493-502, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24696415

ABSTRACT

Claudins have been reported to be differentially regulated in malignancies and implicated in the process of carcinogenesis and tumor progression. Claudin-1 has been described as key factor in the entry of hepatitis C virus (HCV) into hepatocytes and as promoter of epithelial-mesenchymal transition in liver cells. The objective of the current study was to characterize claudin expression in hepatocellular carcinoma (HCC) as well as HCC-surrounding and normal liver samples with respect to cirrhosis and HCV infection. Expression of claudin-1, -2, -3, -4, and -7 was measured by morphometric analysis of immunohistochemistry, and Western blotting in 30 HCCs with 30 corresponding non-tumorous tissues and 6 normal livers. Claudin-1 and -7 protein expression was found significantly elevated in cirrhosis when compared with non-cirrhotic liver. HCCs developed in cirrhotic livers showed even higher expression of claudin-1 contrary to decreased claudin-7 expression when compared with cirrhosis. With reference to HCV status, HCCs or surrounding livers of HCV-infected samples did not show significant alterations in claudin expression when compared with HCV-negative specimens. Cirrhotic transformation associates with elevated claudin-1 and -7 expressions in both non-tumorous liver and HCC. The fact that no significant differences in claudin expression were found regarding HCV-positivity in our sample set suggests that HCV infection alone does not induce a major increase in the total amount of its entry co-factor claudin-1. Increased expression of claudin-1 seems to be a consequence of cirrhotic transformation and might contribute to a more effective HCV entry and malignant transformation.


Subject(s)
Biomarkers/metabolism , Carcinoma, Hepatocellular/metabolism , Claudins/metabolism , Liver Cirrhosis/metabolism , Liver Neoplasms/metabolism , Liver/metabolism , Blotting, Western , Carcinoma, Hepatocellular/pathology , Case-Control Studies , Female , Humans , Immunoenzyme Techniques , Liver/pathology , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...