Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Clin Microbiol Infect Dis ; 30(8): 981-7, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21298459

ABSTRACT

Beta-lactam antibiotics have been discussed as options for the treatment of infections caused by multiresistant extended-spectrum beta-lactamase (ESBL)-producing bacteria if the minimum inhibitory concentration (MIC) is low. The objective of this study was to investigate the in vitro activity of different beta-lactam antibiotics against CTX-M-producing Escherichia coli. A total of 198 isolates of E. coli with the ESBL phenotype were studied. Polymerase chain reaction (PCR) amplification of CTX-M genes and amplicon sequencing were performed. The MICs for amoxicillin-clavulanic acid, aztreonam, cefepime, cefotaxime, ceftazidime, ceftibuten, ertapenem, imipenem, mecillinam, meropenem, piperacillin-tazobactam, and temocillin were determined with the Etest. Susceptibility was defined according to the breakpoints of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). MIC(50) and MIC(90) values were calculated. Isolates from CTX-M group 9 showed higher susceptibility to the beta-lactam antibiotics tested than isolates belonging to CTX-M group 1. More than 90% of the isolates belonging to CTX-M group 9 were susceptible to amoxicillin-clavulanic acid, ceftazidime, ceftibuten, piperacillin-tazobactam, and temocillin. The susceptibility was high to mecillinam, being 91%, regardless of the CTX-M group. All isolates were susceptible to imipenem and meropenem, and 99% to ertapenem. This study shows significant differences in susceptibility to different beta-lactam antibiotics among the CTX-M-producing E. coli isolates and a significant difference for many antibiotics tested between the CTX-M-producing groups 1 and 9. The good in vitro activity of other beta-lactam antibiotics compared to carbapenems indicate that clinical studies are warranted in order to examine the potential role of these beta-lactam antibiotics in the treatment of infections caused by multiresistant ESBL-producing E. coli.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/enzymology , beta-Lactamases/biosynthesis , beta-Lactams/pharmacology , Escherichia coli/genetics , Genotype , Humans , Microbial Sensitivity Tests , Polymerase Chain Reaction , Sequence Analysis, DNA , beta-Lactamases/genetics
2.
APMIS ; 113(9): 603-12, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16218936

ABSTRACT

Pulsed-field gel electrophoresis (PFGE) is currently considered the gold standard for genotyping of enterococci. However, PFGE is both expensive and time-consuming. The purpose of this study was to investigate whether the PhP system can be used as a reliable clinical screening method for detection of genetically related isolates of enterococci. If so, it should be possible to minimize the number of isolates subjected to PFGE typing, which would save time and money. Ninety-nine clinical enterococcal isolates were analysed by PhP (similarity levels 0.90-0.975) and PFGE (similarity levels < or =3 and < or =6 bands) and all possible pairs of isolates were cross-classified as matched or mismatched. We found that the probability that a pair of isolates (A and B) belonging to the same type according to PhP also belong to the same cluster according to PFGE, i.e. p(A(PFGE)=B(PFGE) * A(PhP)=B(PhP)), and the probability that a pair of isolates of different types according to PhP also belong to different clusters according to PFGE, i.e. p(A(PFGE) not equalB(PFGE) * A(PhP) not equalB(PhP)), was relatively high for E. faecalis (0.86 and 0.96, respectively), but was lower for E. faecium (0.51 and 0.77, respectively). The concordance which shows the probability that PhP and PFGE agree on match or mismatch was 86%-93% for E. faecalis and 54%-66% for E. faecium, which indicates that the PhP method may be useful for epidemiological typing of E. faecalis in the current settings but not for E. faecium.


Subject(s)
Bacterial Typing Techniques , Enterococcus/classification , DNA, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Humans , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...