Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Primatol ; 85(7): e23505, 2023 07.
Article in English | MEDLINE | ID: mdl-37157167

ABSTRACT

Sleep is an important aspect of great ape life; these animals build sleeping platforms every night. In a community of chimpanzees, each subgroup selects a sleeping site where each individual builds a sleeping platform, mostly on a tree. Previous studies have measured the heights of sleeping platforms and sleeping trees to test the predation avoidance and thermoregulation hypotheses of sleeping site selection. However, it remains unclear how components of vegetation structure (vertical and horizontal) together determine the selection of sleeping sites by chimpanzees. Using botanical inventories around sleeping sites in a tropical rainforest of Cameroon, we found that chimpanzees preferentially sleep in trees measuring 40-50 cm in diameter. Regarding height, on average, sleeping trees measured 26 m and sleeping platforms were built at 16 m. To build sleeping platforms, chimpanzees preferred four tree species, which represent less than 3% of tree species in the study area. We demonstrate that the variation in abundance of tree species and the vertical and horizontal structure of the vegetation drive chimpanzee sleeping site selection. It was previously thought that preference for vegetation types was the driver of sleeping site selection in chimpanzees. However, results from this study indicate that the importance of vegetation types in sleeping site selection depends on their botanical characteristics including the variation in tree size, the abundance of all trees, the abundance of sleeping trees, and the occurrence of preferred sleeping tree species, which predict sleeping site selection. The height and diameter of trees are considered by chimpanzees when selecting a particular tree for sleeping and when selecting a site with a specific vertical structure. In addition to tree height, the abundance of smaller neighboring trees may also play a role in the chimpanzee antipredation strategy. Our results demonstrate that chimpanzees consider several vegetation parameters to establish sleeping sites.


Subject(s)
Nesting Behavior , Pan troglodytes , Animals , Pan troglodytes/physiology , Nesting Behavior/physiology , Trees , Sleep , Predatory Behavior
2.
Primates ; 64(3): 339-350, 2023 May.
Article in English | MEDLINE | ID: mdl-36808317

ABSTRACT

Great apes lose suitable habitats required for their reproduction and survival due to human activities across their distribution range in Africa. Little is known about habitat suitability of the Nigeria-Cameroon chimpanzee [Pan troglodytes ellioti (Matschie, 1914)], particularly for populations inhabiting forest reserves in North-West Cameroon. To address this knowledge gap, we employed a common species distribution model (MaxEnt) to map and predict suitable habitats for the Nigeria-Cameroon chimpanzee in Kom-Wum Forest Reserve, North-West Cameroon, based on environmental factors that potentially affect habitat suitability. We related these environmental factors to a dataset of chimpanzee occurrence points recorded during line transect and reconnaissance (recce) surveys in the forest reserve and surrounding forests.  Up to 91% of the study area is unsuitable for chimpanzees. Suitable habitats only represented 9% of the study area, with a high proportion of highly suitable habitats located outside the forest reserve. Elevation, secondary forests density, distance to villages and primary forests density were the most important predictors of habitat suitability for the Nigeria-Cameroon chimpanzee. The probability of chimpanzee occurrence increased with elevation, secondary forest density and distance from villages and roads. Our study provides evidence that suitable chimpanzee habitat in the reserve is degraded, suggesting that efforts to maintain protected areas are insufficient. The reserve management plan needs to be improved to conserve the remaining suitable habitat and to avoid local extinction of this endangered subspecies.


Subject(s)
Ecosystem , Pan troglodytes , Humans , Animals , Cameroon , Nigeria , Forests
3.
Ecol Evol ; 10(8): 3798-3813, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32313637

ABSTRACT

Human activities can lead to a shift in wildlife species' spatial distribution. Understanding the specific effects of human activities on ranging behavior can improve conservation management of wildlife populations in human-dominated landscapes. This study evaluated the effects of forest use by humans on the spatial distribution of mammal species with different behavioral adaptations, using sympatric western lowland gorilla and central chimpanzee as focal species. We collected data on great ape nest locations, ecological and physical variables (habitat distribution, permanent rivers, and topographic data), and anthropogenic variables (distance to trails, villages, and a permanent research site). Here, we show that anthropogenic variables are important predictors of the distribution of wild animals. In the resource model, the distribution of gorilla nests was predicted by nesting habitat distribution, while chimpanzee nests were predicted first by elevation followed by nesting habitat distribution. In the anthropogenic model, the major predictors of gorilla nesting changed to human features, while the major predictors of chimpanzee nesting remained elevation and the availability of their preferred nesting habitats. Animal behavioral traits (body size, terrestrial/arboreal, level of specialization/generalization, and competitive inferiority/superiority) may influence the response of mammals to human activities. Our results suggest that chimpanzees may survive in human-encroached areas whenever the availability of their nesting habitat and preferred fruits can support their population, while a certain level of human activities may threaten gorillas. Consequently, the survival of gorillas in human-dominated landscapes is more at risk than that of chimpanzees. Replicating our research in other sites should permit a systematic evaluation of the influence of human activity on the distribution of mammal populations. As wild animals are increasingly exposed to human disturbance, understanding the resulting consequences of shifting species distributions due to human disturbance on animal population abundance and their long-term survival will be of growing conservation importance.

4.
Ecol Evol ; 9(8): 4473-4494, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31031921

ABSTRACT

Understanding the mechanisms governing the coexistence of organisms is an important question in ecology, and providing potential solutions contributes to conservation science. In this study, we evaluated the contribution of several mechanisms to the coexistence of two sympatric frugivores, using western lowland gorillas (Gorilla gorilla gorilla) and central chimpanzees (Pan troglodytes troglodytes) in a tropical rainforest of southeast Cameroon as a model system. We collected great ape fecal samples to determine and classify fruit species consumed; we conducted great ape nest surveys to evaluate seasonal patterns of habitat use; and we collected botanical data to investigate the distribution of plant species across habitat types in relation to their "consumption traits" (which indicate whether plants are preferred or fallback for either gorilla, chimpanzee, or both). We found that patterns of habitat use varied seasonally for both gorillas and chimpanzees and that gorilla and chimpanzee preferred and fallback fruits differed. Also, the distribution of plant consumption traits was influenced by habitat type and matched accordingly with the patterns of habitat use by gorillas and chimpanzees. We show that neither habitat selection nor fruit preference alone can explain the coexistence of gorillas and chimpanzees, but that considering together the distribution of plant consumption traits of fruiting woody plants across habitats as well as the pattern of fruit availability may contribute to explaining coexistence. This supports the assumptions of niche theory with dominant and subordinate species in heterogeneous landscapes, whereby a species may prefer nesting in habitats where it is less subject to competitive exclusion and where food availability is higher. To our knowledge, our study is the first to investigate the contribution of plant consumption traits, seasonality, and habitat heterogeneity to enabling the coexistence of two sympatric frugivores. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://datadryad.org/resource/doi:10.5061/dryad.ms65f29.

SELECTION OF CITATIONS
SEARCH DETAIL
...