Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Molecules ; 28(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37175357

ABSTRACT

Anthyllis henoniana stems were harvested in two seasons: winter and spring (February and May 2021). In this study, we investigated the antioxidant (DPPH, ABTS, FRAP and TAC) and antimicrobial activities, total phenolic contents and total flavonoid contents of the obtained extracts (hexane, ethyl acetate and methanol). The results showed that ethyl acetate extract from stems harvested in winter exhibited the highest antioxidant activity, while ethyl acetate extract from the stems harvested in spring showed the most potent antibacterial and antifungal activities. To explain these differences, we investigated the phytochemical composition of these two extracts using liquid chromatography coupled with mass spectrometry. Therefore, 45 compounds were detected, from which we identified 20 compounds (flavonoids, triterpenoids, chalcones and phenolic acids); some were specific to the harvest month while others were common for both periods. Some of the major compounds detected in ethyl acetate (spring) were dihydrochalcone (Kanzonol Y, 8.2%) and flavanone (sophoraflavanone G, 5.9%), previously recognized for their antimicrobial effects. We therefore concluded that the difference in activities observed for the two harvest periods depends on the chemical composition of the extracts and the relative abundance of each compound.


Subject(s)
Anti-Infective Agents , Antioxidants , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Seasons , Anti-Infective Agents/pharmacology , Phytochemicals/pharmacology , Phytochemicals/chemistry , Flavonoids/analysis
2.
iScience ; 26(3): 106157, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36879819

ABSTRACT

Hymenopterans represent one of the most abundant groups of venomous organisms but remain little explored due to the difficult access to their venom. The development of proteo-transcriptomic allowed us to explore diversity of their toxins offering interesting perspectives to identify new biological active peptides. This study focuses on U9 function, a linear, amphiphilic and polycationic peptide isolated from ant Tetramorium bicarinatum venom. It shares physicochemical properties with M-Tb1a, exhibiting cytotoxic effects through membrane permeabilization. In the present study, we conducted a comparative functional investigation of U9 and M-Tb1a and explored the mechanisms underlying their cytotoxicity against insect cells. After showing that both peptides induced the formation of pores in cell membrane, we demonstrated that U9 induced mitochondrial damage and, at high concentrations, localized into cells and induced caspase activation. This functional investigation highlighted an original mechanism of U9 questioning on potential valorization and endogen activity in T. bicarinatum venom.

3.
Insect Biochem Mol Biol ; 151: 103876, 2022 12.
Article in English | MEDLINE | ID: mdl-36410579

ABSTRACT

Among ants, Myrmicinae represents the most speciose subfamily. The venom composition previously described for these social insects is extremely variable, with alkaloids predominant in some genera while, conversely, proteomics studies have revealed that some myrmicine ant venoms are peptide-rich. Using integrated transcriptomic and proteomic approaches, we characterized the venom peptidomes of six ants belonging to the different tribes of Myrmicinae. We identified a total of 79 myrmicitoxins precursors which can be classified into 38 peptide families according to their mature sequences. Myrmicine ant venom peptidomes showed heterogeneous compositions, with linear and disulfide-bonded monomers as well as dimeric toxins. Several peptide families were exclusive to a single venom whereas some were retrieved in multiple species. A hierarchical clustering analysis of precursor signal sequences led us to divide the myrmicitoxins precursors into eight families, including some that have already been described in other aculeate hymenoptera such as secapin-like peptides and voltage-gated sodium channel (NaV) toxins. Evolutionary and structural analyses of two representatives of these families highlighted variation and conserved patterns that might be crucial to explain myrmicine venom peptide functional adaptations to biological targets.


Subject(s)
Ant Venoms , Ants , Animals , Ants/genetics , Proteomics , Ant Venoms/chemistry , Peptides/chemistry , Transcriptome
4.
Molecules ; 27(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35889269

ABSTRACT

The phytochemical analysis of antioxidant and antibacterial activities of Erodium arborescens aerial part extracts constitute the focus of this research. The chemical composition of an acetone extract was investigated using LC-HESI-MS2, which revealed the presence of 70 compounds. The major identified components were tannin derivatives. Total polyphenol and total flavonoid contents were assessed in plant extracts (hexane, ethyl acetate, acetone and methanol). The results showed that the acetone extract exhibited the highest contents of polyphenols and flavonoids, 895.54 and 36.39 mg QE/g DE, respectively. Furthermore, when compared to other extracts, Erodium arborescens acetone extract was endowed with the highest antioxidant activity with 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and total antioxidant capacity (TAC) tests. In addition, the four extracts of Erodium arborescens showed variable degrees of antimicrobial activity against the tested strains, and the interesting activity was obtained with acetone and methanol extracts.


Subject(s)
Acetone , Antioxidants , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Flavonoids/chemistry , Methanol , Plant Components, Aerial/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/analysis
5.
Molecules ; 27(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35408713

ABSTRACT

Considering medicinal plants as an inexhaustible source of active ingredients that may be easily isolated using simple and inexpensive techniques, phytotherapy is becoming increasingly popular. Various experimental approaches and analytical methods have been used to demonstrate that the genus Calendula (Asteraceae) has a particular richness in active ingredients, especially phenolic compounds, which justifies the growing interest in scientific studies on this genus' species. From a chemical and biological viewpoint, Calendula aegyptiaca is a little-studied plant. For the first time, high-performance liquid chromatography combined with negative electrospray ionization mass spectrometry (HPLC-HESI-MS) was used to analyze methanolic extracts of Calendula aegyptiaca (C. aegyptiaca) fruits. Thirty-five molecules were identified. Flavonoids (47.87%), phenolic acids (5.18%), and saponins (6.47%) formed the majority of these chemicals. Rutin, caffeic acid hexoside, and Soyasaponin ßg' were the most abundant molecules in the fruit methanolic extract, accounting for 17.49% of total flavonoids, 2.32 % of total phenolic acids, and 0.95% of total saponins, respectively. The antioxidant activity of the fruit extracts of C. aegyptiaca was investigated using FRAP, TAC, and DPPH as well as flavonoids and total phenols content. Because the phenolic components were more extractable using polar solvents, the antioxidant activity of the methanolic extract was found to be higher than that of the dichloromethane and hexane extracts. The IC50 value for DPPH of methanolic extract was found to be 0.041 mg·mL-1. Our findings showed that C. aegyptiaca is an important source of physiologically active compounds.


Subject(s)
Calendula , Saponins , Antioxidants/chemistry , Chromatography, High Pressure Liquid/methods , Flavonoids/chemistry , Fruit/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods
6.
Molecules ; 26(14)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34299613

ABSTRACT

Aeonium is a genus of succulents belonging to the Crassulaceae family. Their importance in traditional medicine has stimulated both pharmacological and chemical research. In this study, we optimized extraction, separation, and analytical conditions using a high performance liquid chromatographic method coupled with electrospray ionization mass spectrometry by the negative mode (HPLC-ESI-MS) in order to, for the first time, determine thirty-four compounds from Aeonium arboreum leaves. Twenty-one of them are assigned among which are sixteen flavonoids and five phenolic acids. FRAP, TAC, DPPH, and ABTS•+ radical scavenging were used to evaluate antioxidant activity. The obtained IC50 values ranged from 0.031 to 0.043 mg.mL-1 for DPPH and between 0.048 and 0.09 mg·mL-1 for ABTS•+. Antimicrobial activity was also assessed. The obtained minimum inhibitory concentrations (MIC) of these extracts ranged from 12.5 to 50 µg·mL-1 against Micrococcus luteus, Listeria ivanovii, Staphylococcus aureus, Salmonella enterica, Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger, and Fusarium oxysporum, and from 25 to 50 µg·mL-1 against Candida albicans. Therefore, these extracts can be considered as a potential source of biological active compounds.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Crassulaceae/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
7.
J Proteome Res ; 19(4): 1800-1811, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32182430

ABSTRACT

Using an integrated transcriptomic and proteomic approach, we characterized the venom peptidome of the European red ant, Manica rubida. We identified 13 "myrmicitoxins" that share sequence similarities with previously identified ant venom peptides, one of them being identified as an EGF-like toxin likely resulting from a threonine residue modified by O-fucosylation. Furthermore, we conducted insecticidal assays of reversed-phase HPLC venom fractions on the blowfly Lucilia caesar, permitting us to identify six myrmicitoxins (i.e., U3-, U10-, U13-, U20-MYRTX-Mri1a, U10-MYRTX-Mri1b, and U10-MYRTX-Mri1c) with an insecticidal activity. Chemically synthesized U10-MYRTX-Mri1a, -Mri1b, -Mri1c, and U20-MYRTX-Mri1a irreversibly paralyzed blowflies at the highest doses tested (30-125 nmol·g-1). U13-MYRTX-Mri1a, the most potent neurotoxic peptide at 1 h, had reversible effects after 24 h (150 nmol·g-1). Finally, U3-MYRTX-Mri1a has no insecticidal activity, even at up to 55 nmol·g-1. Thus, M. rubida employs a paralytic venom rich in linear insecticidal peptides, which likely act by disrupting cell membranes.


Subject(s)
Ant Venoms , Ants , Animals , Peptides , Proteomics , Venoms
8.
J Insect Sci ; 19(6)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31865367

ABSTRACT

Helicobacter pylori (Marshall & Goodwin) is a widespread human pathogen that is acquiring resistance to the antibiotics used to treat it. This increasing resistance necessitates a continued search for new antibiotics. An antibiotic source that shows promise is animals whose immune systems must adapt to living in bacteria-laden conditions by producing antibacterial peptides or small molecules. Among these animals is the black soldier fly (BSF; Hermetia illucens Linnaeus), a Diptera that colonizes decomposing organic matter. In order to find anti-H. pylori peptides in BSF, larvae were challenged with Escherichia coli (Enterobacteriales: Enterobacteriaceae). Small peptides were extracted from hemolymph and purified using solid-phase extraction, molecular weight cutoff filtration and two rounds of preparative high performance liquid chromatography (HPLC). The anti-H. pylori fraction was followed through the purification process using the inhibition zone assay in brain-heart infusion agar, while peptides from uninoculated larvae had no activity. The inhibition halo of the active sample was comparable to the action of metronidazole in the inhibition zone assay. The purified sample contained four peptides with average masses of approximately 4.2 kDa that eluted together when analyzed by HPLC-mass spectrometry. The peptides likely have similar sequences, activity, and properties. Therefore, BSF produces inducible antibacterial peptides that have in vitro activity against H. pylori, which highlights BSF's position as an important target for further bioprospecting.


Subject(s)
Antimicrobial Cationic Peptides/isolation & purification , Diptera/chemistry , Helicobacter pylori , Animals , Bioprospecting , Escherichia coli , Larva/chemistry , Microbial Sensitivity Tests
9.
Toxins (Basel) ; 11(12)2019 12 14.
Article in English | MEDLINE | ID: mdl-31847368

ABSTRACT

In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized "plant-ant" species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant Tetraponera aethiops (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC-MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome.


Subject(s)
Ant Venoms/chemistry , Peptides/analysis , Amino Acid Sequence , Animals , Ants , Chromatography, High Pressure Liquid , Mass Spectrometry
10.
J Proteome Res ; 17(10): 3503-3516, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30149710

ABSTRACT

The peptide toxins in the venoms of small invertebrates such as stinging ants have rarely been studied due to the limited amount of venom available per individual. We used a venomics strategy to identify the molecular diversity of the venom peptidome for the myrmicine ant Tetramorium bicarinatum. The methodology included (i) peptidomics, in which the venom peptides are sequenced through a de novo mass spectrometry approach or Edman degradation; (ii) transcriptomics, based on RT-PCR-cloning and DNA sequencing; and (iii) the data mining of the RNA-seq in the available transcriptome. Mass spectrometry analysis revealed about 2800 peptides in the venom. However, the de novo sequencing suggested that most of these peptides arose from processing or the artifactual fragmentations of full-length mature peptides. These peptides, called "myrmicitoxins", are produced by a limited number of genes. Thirty-seven peptide precursors were identified and classified into three superfamilies. These precursors are related to pilosulin, secapin or are new ant venom prepro-peptides. The mature myrmicitoxins display sequence homologies with antimicrobial, cytolytic and neurotoxic peptides. The venomics strategy enabled several post-translational modifications in some peptides such as O-glycosylation to be identified. This study provides novel insights into the molecular diversity and evolution of ant venoms.


Subject(s)
Ant Venoms/metabolism , Gene Expression Profiling/methods , Insect Proteins/metabolism , Peptides/metabolism , Proteome/metabolism , Proteomics/methods , Amino Acid Sequence , Animals , Ant Venoms/classification , Ant Venoms/genetics , Ants/chemistry , Ants/genetics , Ants/metabolism , Cell Line , High-Throughput Nucleotide Sequencing/methods , Insect Proteins/classification , Insect Proteins/genetics , Mass Spectrometry , Mice , Peptides/chemistry , Peptides/genetics , Phylogeny , Proteome/genetics , Sequence Analysis, Protein/methods , Sequence Homology, Amino Acid
11.
Toxins (Basel) ; 10(1)2017 12 29.
Article in English | MEDLINE | ID: mdl-29286296

ABSTRACT

The venom peptide bicarinalin, previously isolated from the ant Tetramorium bicarinatum, is an antimicrobial agent with a broad spectrum of activity. In this study, we investigate the potential of bicarinalin as a novel agent against Helicobacter pylori, which causes several gastric diseases. First, the effects of synthetic bicarinalin have been tested against Helicobacter pylori: one ATCC strain, and forty-four isolated from stomach ulcer biopsies of Peruvian patients. Then the cytoxicity of bicarinalin on human gastric cells and murine peritoneal macrophages was measured using XTT and MTT assays, respectively. Finally, the preventive effect of bicarinalin was evaluated by scanning electron microscopy using an adherence assay of H. pylori on human gastric cells treated with bicarinalin. This peptide has a potent antibacterial activity at the same magnitude as four antibiotics currently used in therapies against H. pylori. Bicarinalin also inhibited adherence of H. pylori to gastric cells with an IC50 of 0.12 µg·mL-1 and had low toxicity for human cells. Scanning electron microscopy confirmed that bicarinalin can significantly decrease the density of H. pylori on gastric cells. We conclude that Bicarinalin is a promising compound for the development of a novel and effective anti-H. pylori agent for both curative and preventive use.


Subject(s)
Ant Venoms/pharmacology , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Helicobacter pylori/drug effects , Animals , Cell Adhesion/drug effects , Cell Line , Cell Survival/drug effects , Helicobacter pylori/ultrastructure , Humans , Macrophages, Peritoneal/drug effects , Mice , RAW 264.7 Cells
12.
Peptides ; 79: 103-13, 2016 05.
Article in English | MEDLINE | ID: mdl-27058430

ABSTRACT

We have recently characterized bicarinalin as the most abundant peptide from the venom of the ant Tetramorium bicarinatum. This antimicrobial peptide is active against Staphylococcus and Enterobacteriaceae. To further investigate the antimicrobial properties of this cationic and cysteine-free peptide, we have studied its antibacterial, antifungal and antiparasitic activities on a large array of microorganisms. Bicarinalin was active against fifteen microorganisms with minimal inhibitory concentrations ranging from 2 and 25µmolL(-1). Cronobacter sakazakii, Salmonella enterica, Candida albicans, Aspergilus niger and Saccharomyces cerevisiae were particularly susceptible to this novel antimicrobial peptide. Resistant strains of Staphylococcus aureus, Pseudomonas aeruginosa and C. albicans were as susceptible as the canonical strains. Interestingly, bicarinalin was also active against the parasite Leishmania infantum with a minimal inhibitory concentrations of 2µmolL(-1). The bicarinalin pre-propeptide cDNA sequence has been determined using a combination of degenerated primers with RACE PCR strategy. Interestingly, the N-terminal domain of bicarinalin pre-propeptide exhibited sequence similarity with the pilosulin antimicrobial peptide family previously described in the Myrmecia venoms. Moreover, using SYTOX green uptake assay, we showed that, for all the tested microorganisms, bicarinalin acted through a membrane permeabilization mechanism. Two dimensional-NMR experiments showed that bicarinalin displayed a 10 residue-long α-helical structure flanked by two N- and C-terminal disordered regions. This partially amphipathic helix may explain the membrane permeabilization mechanism of bicarinalin observed in this study. Finally, therapeutic value of bicarinalin was highlighted by its low cytotoxicity against human lymphocytes at bactericidal concentrations and its long half-life in human serum which was around 15h.


Subject(s)
Ant Venoms/pharmacology , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antiprotozoal Agents/pharmacology , Ants , Amino Acid Sequence , Animals , Ant Venoms/chemistry , Ant Venoms/genetics , Ant Venoms/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/metabolism , Base Sequence , Cell Membrane Permeability , Cell Survival/drug effects , Cells, Cultured , Conserved Sequence , Half-Life , Humans , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/pharmacology , Lethal Dose 50 , Lymphocytes/drug effects , Lymphocytes/physiology , Microbial Sensitivity Tests , Models, Molecular , Phylogeny , Protein Structure, Secondary , Proteolysis
13.
Environ Sci Pollut Res Int ; 21(7): 4934-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24043507

ABSTRACT

Thymol is a natural substance increasingly used as an alternative to pesticides in the fight against the Varroa destructor mite. Despite the effectiveness of this phenolic monoterpene against Varroa, few articles have covered the negative or side effects of thymol on bees. In a previous study, we have found an impairment of phototaxis in honeybees following application of sublethal doses of thymol-lower or equal to 100 ng/bee-under laboratory conditions. The present work shows the same behavioral effects on bees from hives treated with Apilife Var®, a veterinary drug containing 74 % thymol, with a decrease in phototactic behavior observed 1 day after treatment. Thus, thymol causes disruption of bee phototactic behavior both under laboratory conditions as well as in beehives. The bee exposure dose in treated hives was quantified using gas chromatography coupled to mass spectrometry (GC-MS), giving a median value of 4.3 µg per body 24 h after treatment, with 11 ng in the brain. The thymol level in 20 organic waxes from hives treated with Apilife Var® was also measured and showed that it persists in waxes (around 10 mg/kg) 1 year after treatment. Thus, in the light of (1) behavioral data obtained under laboratory conditions and in beehives, (2) the persistence of thymol in waxes, and (3) the high load on bees, it would appear important to study the long-term effects of thymol in beehives.


Subject(s)
Bees/physiology , Behavior, Animal/drug effects , Pesticides/toxicity , Thymol/toxicity , Animals , Gas Chromatography-Mass Spectrometry , Pesticides/analysis , Pesticides/metabolism , Thymol/analysis , Thymol/metabolism , Waxes/chemistry
14.
Bioorg Chem ; 48: 16-21, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23639830

ABSTRACT

A series of bis-indolone-N-oxides, 1a-f, was prepared from bis(ethynyl)benzenes and o-halonitroaryls and studied for their in vitro antiplasmodial activities against Plasmodium falciparum and representative strains of bacteria and candida as well as for their cytotoxicity against a human tumor cell line (MCF7). They did not cause any haemolysis (300 µgmL(-1)). Of the synthesized bis-indolones, compound 1a had the most potent antiplasmodial activity (IC50=0.763 µmolL(-1) on the FcB1 strain) with a selectivity index (CC50 MCF7/IC50 FcB1) of 35.6. No potency against the tested microbial strains was observed.


Subject(s)
Anti-Infective Agents/chemical synthesis , Antimalarials/chemical synthesis , Indoles/chemistry , Oxides/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity , Antimalarials/pharmacology , Antimalarials/toxicity , Bacteria/drug effects , Candida/drug effects , Cell Survival/drug effects , Humans , MCF-7 Cells , Microbial Sensitivity Tests , Oxides/chemical synthesis , Oxides/pharmacology , Plasmodium falciparum/drug effects
15.
Exp Appl Acarol ; 61(1): 107-18, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23423425

ABSTRACT

Rearing pests or parasites of very small size in the absence of their living host is a challenge for behavioural, physiological and pathological studies. For feeding Varroa destructor, an ectoparasitic mite of Apis mellifera, a confinement space with a membrane separating the nutritive solution and the space was designed. The mite measures less than 2 mm and bears a perforating apparatus with a length of 15 µm. The membrane, an essential element of the chamber, has a thickness of 0.1 µm, and is made of chitosan. It closes one face of the individual confinement chamber and allows piercing and the ingestion of the nutritive solution. Factors inducing feeding can be applied on the inner walls or on the membrane. In the particular case of Varroa, the highest percentages of feeding mites are obtained by addition of host haemolymph to the nutritive solution, suggesting the kairomonal role of haemolymph in addition to its nutritional one. The membrane concept can be easily applied to several mites or other micro-pests.


Subject(s)
Bees/parasitology , Host-Parasite Interactions , Varroidae/physiology , Animals , Chitosan , Energy Metabolism , Feeding Behavior , Hemolymph/metabolism , Hemolymph/physiology , Membranes, Artificial , Pheromones/physiology
16.
Peptides ; 38(2): 363-70, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22960382

ABSTRACT

A novel antimicrobial peptide, named Bicarinalin, has been isolated from the venom of the ant Tetramorium bicarinatum. Its amino acid sequence has been determined by de novo sequencing using mass spectrometry and by Edman degradation. Bicarinalin contained 20 amino acid residues and was C-terminally amidated as the majority of antimicrobial peptides isolated to date from insect venoms. Interestingly, this peptide had a linear structure and exhibited no meaningful similarity with any known peptides. Antibacterial activities against Staphylococcus aureus and S. xylosus strains were evaluated using a synthetic replicate. Bicarinalin had a potent and broad antibacterial activity of the same magnitude as Melittin and other hymenopteran antimicrobial peptides such as Pilosulin or Defensin. Moreover, this antimicrobial peptide has a weak hemolytic activity compared to Melittin on erythrocytes, suggesting potential for development into an anti-infective agent for use against emerging antibiotic-resistant pathogens.


Subject(s)
Ant Venoms/pharmacology , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Ants/chemistry , Staphylococcus aureus/drug effects , Staphylococcus/drug effects , Venoms/chemistry , Amino Acid Sequence , Animals , Ant Venoms/chemistry , Ant Venoms/isolation & purification , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/isolation & purification , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Sequence Data , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Tandem Mass Spectrometry
17.
PLoS One ; 6(12): e28571, 2011.
Article in English | MEDLINE | ID: mdl-22194854

ABSTRACT

Due to their prowess in interspecific competition and ability to catch a wide range of arthropod prey (mostly termites with which they are engaged in an evolutionary arms race), ants are recognized as a good model for studying the chemicals involved in defensive and predatory behaviors. Ants' wide diversity of nesting habits and relationships with plants and prey types implies that these chemicals are also very diverse. Using the African myrmicine ant Crematogaster striatula as our focal species, we adopted a three-pronged research approach. We studied the aggressive and predatory behaviors of the ant workers, conducted bioassays on the effect of their Dufour gland contents on termites, and analyzed these contents. (1) The workers defend themselves or eliminate termites by orienting their abdominal tip toward the opponent, stinger protruded. The chemicals emitted, apparently volatile, trigger the recruitment of nestmates situated in the vicinity and act without the stinger having to come into direct contact with the opponent. Whereas alien ants competing with C. striatula for sugary food sources are repelled by this behavior and retreat further and further away, termites defend their nest whatever the danger. They face down C. striatula workers and end up by rolling onto their backs, their legs batting the air. (2) The bioassays showed that the toxicity of the Dufour gland contents acts in a time-dependent manner, leading to the irreversible paralysis, and, ultimately, death of the termites. (3) Gas chromatography-mass spectrometry analyses showed that the Dufour gland contains a mixture of mono- or polyunsaturated long-chain derivatives, bearing functional groups like oxo-alcohols or oxo-acetates. Electrospray ionization-mass spectrometry showed the presence of a molecule of 1584 Da that might be a large, acetylated alkaloid capable of splitting into smaller molecules that could be responsible for the final degree of venom toxicity.


Subject(s)
Air , Ants/physiology , Predatory Behavior/physiology , Africa , Animal Structures/metabolism , Animals , Ants/classification , Biological Assay , Gas Chromatography-Mass Spectrometry , Isoptera/physiology , Species Specificity , Spectrometry, Mass, Electrospray Ionization , Time Factors , Tissue Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...