Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Orv Hetil ; 160(35): 1387-1394, 2019 Sep.
Article in Hungarian | MEDLINE | ID: mdl-31448645

ABSTRACT

Introduction and aim: In case of imaging modalities using ionizing radiation, radiation exposure of the patients is a vital issue. It is important to survey the various dose-reducing techniques to achieve optimal radiation protection while keeping image quality on an optimal level. Method: We reprocessed 105 patients' data prospectively between February and April 2017. The determination of the radiation dose was based on the effective dose, calculated by multiplying the dose-length product (DLP) and dose-conversation coefficient. In case of image quality we used signal-to-noise ratio (SNR) based on manual segmentation of region of interest (ROI). For statistical analysis, one sample t-test and Wilcoxon signed rank test were used. Results: Using iterative reconstruction, the effective dose was significantly lower (p<0.001) in both native and contrast-enhanced abdominal, contrast-enhanced chest CT scans and in the case of the total effective dose. At native and contrast-enhanced abdominal CT scans, the noise content of the images showed significantly lower (p<0.001) values for iterative reconstruction images. At contrast-enhanced chest CT scans there was no significant difference between the noise content of the images (p>0.05). Conclusion: Using iterative reconstruction, it was possible to achieve significant dose reduction. Since the noise content of the images was not significantly higher using the iterative reconstruction compared to the filtered back projection, further dose reduction can be achievable while preserving the optimal quality of the images. Orv Hetil. 2019; 160(35): 1387-1394.


Subject(s)
Image Processing, Computer-Assisted/methods , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Abdominal/methods , Radiography, Thoracic/methods , Signal-To-Noise Ratio , Tomography, X-Ray Computed/methods , Algorithms , Humans , Prospective Studies , Reproducibility of Results
2.
Cell Mol Life Sci ; 73(20): 3935-47, 2016 10.
Article in English | MEDLINE | ID: mdl-27137185

ABSTRACT

T-cell receptor (TCR)-transgenic models of acute graft-versus-host disease (aGvHD) offer a straightforward and highly controlled approach to study the mechanisms and consequences of T-cell activation following allogeneic hematopoietic stem cell transplantation (aHSCT). Here, we report that aHSCT involving OT-I mice as donors, carrying an ovalbumin-specific CD8+ TCR, and Act-mOVA mice as recipients, expressing membrane-bound ovalbumin driven by the ß-actin promoter, induces lethal aGvHD in a CD8+ T-cell-dependent, highly reproducible manner, within 4-7 days. Tracking of UBC-GFP/OT-I graft CD8+ T cells disclosed heavy infiltration of the gastrointestinal tract, liver, and lungs at the onset of the disease, and histology confirmed hallmark features of gastrointestinal aGVHD, hepatic aGvHD, and aGvHD-associated lymphocytic bronchitis in infiltrated organs. However, T-cell infiltration was virtually absent in the skin, a key target organ of human aGvHD, and histology confirmed the absence of cutaneous aGVHD, as well. We show that the model allows studying CD8+ T-cell responses in situ, as selective recovery of graft CD45.1/OT-I CD8+ T cells from target organs is simple and feasible by automated tissue dissociation and subsequent cell sorting. Assessment of interferon-gamma production by flow cytometry, granzyme-B release by ELISA, TREC assay, and whole-genome gene expression profiling confirmed that isolated graft CD8+ T cells remained intact, underwent clonal expansion, and exerted effector functions in all affected tissues. Taken together, these data demonstrate that the OT-I/Act-mOVA model is suitable to study the CD8+ T-cell-mediated effector mechanisms in a disease closely resembling fatal human gastrointestinal and hepatic aGVHD that may develop after aHSCT using HLA-matched unrelated donors.


Subject(s)
Actins/metabolism , CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Organ Specificity , Ovalbumin/metabolism , Acute Disease , Animals , Cell Membrane/metabolism , Cell Proliferation , Cell Tracking , Chickens , Clone Cells , Disease Models, Animal , Flow Cytometry , Gene Expression Profiling , Graft vs Host Disease/pathology , Mice, Inbred C57BL , Mice, Transgenic , Reproducibility of Results , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...