Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
2.
Cardiol Ther ; 13(1): 149-161, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38216822

ABSTRACT

INTRODUCTION: Non-responders to cardiac resynchronization therapy (CRT-NR) have poor prognosis. Sacubitril/valsartan (SV) treatment improved the outcome of patients with heart failure with reduced left ventricular (LV) ejection fraction (HFrEF) in randomized trials with no data on the specific cohort of CRT-NRs. The aim of this study was to compare the echocardiographic and biomarker changes in CRT-NR patients treated with versus without SV, and in patients with HFrEF on SV therapy. METHODS: CRT-NR patients initiated on SV (group I), CRT-NR patients on angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEi/ARB) (group II), and patients with HFrEF (without CRT) initiated on SV (group III) were identified in our heart failure (HF) registry. CRT-NR was defined as < 10% improvement in left ventricular ejection fraction (LV EF) 6 months after the implantation. Echocardiographic parameters and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels at baseline and at the end of follow-up were compared. RESULTS: A total of 275 patients (group I, 70; group II, 70; and group III, 135) were included. After a follow-up of 7.54 ± 1.8 months (mean ± standard deviation [SD]), LV EF (%) increased in group I (25.2 ± 5.7 versus 29.4% ± 6.7; p < 0.001) and in group III (26.6 ± 6.4 versus 29.9 ± 6.7; p < 0.001). LV end-systolic diameters (mm) decreased in group I (56.6 ± 9.0 versus 54.3 ± 8.7; p = 0.004) and in group III (55.9 ± 9.9 versus 54.3 ± 11.2; p = 0.021). The levels of NT-proBNP (pg/mL) decreased in group I (2058.86 [1041.07-4502.51] versus 1121.55 [545-2541]; p < 0.001) and in group III (2223.35 [1233.03-4795.96] versus 1123.09 [500.38-2651.27]; p < 0.001). The extent of improvement was similar in groups I and III (p > 0.05). No significant changes were detected in group II. CONCLUSION: SV therapy induced similar improvements in echocardiographic parameters and in NT-proBNP levels in CRT-NR patients and in patients with HFrEF without resynchronization.

3.
Nature ; 626(7999): 574-582, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086421

ABSTRACT

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Subject(s)
Astrocytes , Neuroprotection , Adenylyl Cyclases/metabolism , Astrocytes/cytology , Astrocytes/enzymology , Astrocytes/metabolism , Cell Differentiation , Cell Nucleus/metabolism , Cell Survival , Cyclic AMP/metabolism , Cytoplasm/metabolism , Macrophages/metabolism , Macrophages/pathology , Microglia/metabolism , Microglia/pathology , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Optic Nerve Injuries/therapy , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , White Matter/metabolism , White Matter/pathology , Glaucoma/pathology , Glaucoma/therapy
4.
Front Cardiovasc Med ; 10: 1168339, 2023.
Article in English | MEDLINE | ID: mdl-37332579

ABSTRACT

Introduction: Valve calcification (VC) is a widespread complication in chronic kidney disease (CKD) patients. VC is an active process with the involvement of in situ osteogenic transition of valve interstitial cells (VICs). VC is accompanied by the activation of hypoxia inducible factor (HIF) pathway, but the role of HIF activation in the calcification process remains undiscovered. Methods and result: Using in vitro and in vivo approaches we addressed the role of HIF activation in osteogenic transition of VICs and CKD-associated VC. Elevation of osteogenic (Runx2, Sox9) and HIF activation markers (HIF-1α and HIF-2α) and VC occurred in adenine-induced CKD mice. High phosphate (Pi) induced upregulation of osteogenic (Runx2, alkaline-phosphatase, Sox9, osteocalcin) and hypoxia markers (HIF-1α, HIF-2α, Glut-1), and calcification in VICs. Down-regulation of HIF-1α and HIF-2α inhibited, whereas further activation of HIF pathway by hypoxic exposure (1% O2) or hypoxia mimetics [desferrioxamine, CoCl2, Daprodustat (DPD)] promoted Pi-induced calcification of VICs. Pi augmented the formation of reactive oxygen species (ROS) and decreased viability of VICs, whose effects were further exacerbated by hypoxia. N-acetyl cysteine inhibited Pi-induced ROS production, cell death and calcification under both normoxic and hypoxic conditions. DPD treatment corrected anemia but promoted aortic VC in the CKD mice model. Discussion: HIF activation plays a fundamental role in Pi-induced osteogenic transition of VICs and CKD-induced VC. The cellular mechanism involves stabilization of HIF-1α and HIF-2α, increased ROS production and cell death. Targeting the HIF pathways may thus be investigated as a therapeutic approach to attenuate aortic VC.

5.
J Clin Med ; 12(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36902521

ABSTRACT

Multidisciplinary inpatient rehabilitation plays an important role in the recovery of patients with cardiovascular diseases (CVDs). Lifestyle changes, achieved by exercise, diet, weight loss and patient education programs, are the first steps to a healthier life. Advanced glycation end products (AGEs) and their receptor (RAGE) are known to be involved in CVDs. Clarification on whether initial AGE levels can influence the rehabilitation outcome is important. Serum samples were collected at the beginning and end of the inpatient rehabilitation stay and analyzed for parameters: lipid metabolism, glucose status, oxidative stress, inflammation and AGE/RAGE-axis. As result, a 5% increase in the soluble isoform RAGE (sRAGE) (T0: 891.82 ± 44.97 pg/mL, T1: 937.17 ± 43.29 pg/mL) accompanied by a 7% decrease in AGEs (T0: 10.93 ± 0.65 µg/mL, T1: 10.21 ± 0.61 µg/mL) was shown. Depending on the initial AGE level, a significant reduction of 12.2% of the AGE activity (quotient AGE/sRAGE) was observed. We found that almost all measured factors improved. Summarizing, CVD-specific multidisciplinary rehabilitation positively influences disease-associated parameters, and thus provides an optimal starting point for subsequent disease-modifying lifestyle changes. Considering our observations, the initial physiological situations of patients at the beginning of their rehabilitation stay seem to play a decisive role regarding the assessment of rehabilitation success.

6.
Biomed Pharmacother ; 151: 113124, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35594709

ABSTRACT

The substrate-analog furin inhibitor MI-1851 can suppress the cleavage of SARS-CoV-2 spike protein and consequently produces significant antiviral effect on infected human airway epithelial cells. In this study, the interaction of inhibitor MI-1851 was examined with human serum albumin using fluorescence spectroscopy and ultrafiltration techniques. Furthermore, the impacts of MI-1851 on human microsomal hepatic cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6 and 3A4 activities were assessed based on fluorometric assays. The inhibitory action was also examined on human recombinant CYP3A4 enzyme and on hepatocytes. In addition, microsomal stability (60 min) and cytotoxicity were tested as well. MI-1851 showed no relevant interaction with human serum albumin and was significantly depleted by human microsomes. Furthermore, it did not inhibit CYP1A2, 2C9, 2C19 and 2D6 enzymes. In human hepatocytes, CYP3A4 was significantly suppressed by MI-1851 and weak inhibition was noticed in regard to human microsomes and human recombinant CYP3A4. Finally, MI-1851 did not impair the viability and the oxidative status of primary human hepatocytes (up to 100 µM concentration). Based on these observations, furin inhibitor MI-1851 appears to be potential drug candidates in the treatment of COVID-19, due to the involvement of furin in S protein priming and thus activation of the pandemic SARS-CoV-2.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Furin , Humans , Albumins/pharmacology , COVID-19 Drug Treatment , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/toxicity , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 Enzyme System/metabolism , Furin/antagonists & inhibitors , Furin/metabolism , Furin/pharmacology , Microsomes, Liver , SARS-CoV-2/drug effects , Serum Albumin, Human/metabolism , Spike Glycoprotein, Coronavirus
7.
Vet Sci ; 9(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35448654

ABSTRACT

In vitro models of animals vulnerable to SARS-CoV-2 infection can support the characterization of effective antiviral drugs, such as synthetic inhibitors of the transmembrane protease serine 2 (TMPRSS2). Changes in cytochrome P450 (CYP) 1A2 activities in the presence of the potential TMPRSS2/matriptase inhibitors (MI) were measured using fluorometric and luminescent assays. Furthermore, the cytotoxicity of these inhibitors was evaluated using the MTS method. In addition, 60 min-long microsomal stability assays were performed using an UPLC-MS/MS procedure to elucidate depletion rates of the inhibitors. CYP1A2 was influenced significantly by MI-463 and MI-1900 in rat microsomes, by MI-432 and MI-482 in beagle microsomes, and by MI-432, MI-463, MI-482, and MI-1900 in cynomolgus monkey microsomes. The IC50 values in monkey microsomes were 1.30 ± 0.14 µM, 2.4 ± 1.4 µM, 0.21 ± 0.09 µM, and 1.1 ± 0.8 µM for inhibitors MI-432, MI-463, MI-482, and MI-1900, respectively. The depletion rates of the parent compounds were lower than 50%, independently of the investigated animal species. The host cell factor TMPRSS2 is of key importance for the cross-species spread of SARS-CoV-2. Studies of the in vitro biotransformation of TMPRSS2 inhibitors provide additional information for the development of new antiviral drugs.

8.
ChemSusChem ; 14(14): 2924-2934, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34021532

ABSTRACT

The development of Cu-based catalysts for the electrochemical CO2 reduction reaction (eCO2 RR) is of major interest for generating commercially important C2 liquid products such as ethanol. Cu is exclusive among the eCO2 RR metallic catalysts in that it facilitates the formation of a range of highly reduced C2 products, with a reasonable total faradaic efficiency but poor product selectivity. Here, a series of new sulfide-derived copper-cadmium catalysts (SD-Cux Cdy ) was developed. An excellent faradaic efficiency of around 32 % but with a relatively low current density of 0.6 mA cm-2 for ethanol was obtained using the SD-CuCd2 catalyst at the relatively low overpotential of 0.89 V in a CO2 -saturated aqueous 0.10 m KHCO3 solution with an H-cell. The current density increased by an order of magnitude under similar conditions using a flow cell where the mass transport rate for CO2 was greatly enhanced. Ex situ spectroscopic and microscopic, and voltammetric investigations pointed to the role of abundant phase boundaries between CdS and Cu+ /Cu sites in the SD-CuCd2 catalyst in enhancing the selectivity and efficiency of ethanol formation at low potentials.

10.
Cell Rep ; 33(9): 108464, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33264616

ABSTRACT

Store-operated Orai1 calcium channels function as highly Ca2+-selective ion channels and are broadly expressed in many tissues including the central nervous system, but their contributions to cognitive processing are largely unknown. Here, we report that many measures of synaptic, cellular, and behavioral models of learning are markedly attenuated in mice lacking Orai1 in forebrain excitatory neurons. Results with focal glutamate uncaging in hippocampal neurons support an essential role of Orai1 channels in amplifying NMDA-receptor-induced dendritic Ca2+ transients that drive activity-dependent spine morphogenesis and long-term potentiation at Schaffer collateral-CA1 synapses. Consistent with these signaling roles, mice lacking Orai1 in pyramidal neurons (but not interneurons) exhibit striking deficits in working and associative memory tasks. These findings identify Orai1 channels as essential regulators of dendritic spine Ca2+ signaling, synaptic plasticity, and cognition.


Subject(s)
Calcium Signaling , Calcium/metabolism , Dendritic Spines/metabolism , Glutamic Acid/metabolism , Animals , Hippocampus/metabolism , Memory , Mice , ORAI1 Protein , Pyramidal Cells/metabolism , Signal Transduction
12.
Sci Signal ; 12(582)2019 05 21.
Article in English | MEDLINE | ID: mdl-31113852

ABSTRACT

Astrocytes are the major glial subtype in the brain and mediate numerous functions ranging from metabolic support to gliotransmitter release through signaling mechanisms controlled by Ca2+ Despite intense interest, the Ca2+ influx pathways in astrocytes remain obscure, hindering mechanistic insights into how Ca2+ signaling is coupled to downstream astrocyte-mediated effector functions. Here, we identified store-operated Ca2+ release-activated Ca2+ (CRAC) channels encoded by Orai1 and STIM1 as a major route of Ca2+ entry for driving sustained and oscillatory Ca2+ signals in astrocytes after stimulation of metabotropic purinergic and protease-activated receptors. Using synaptopHluorin as an optical reporter, we showed that the opening of astrocyte CRAC channels stimulated vesicular exocytosis to mediate the release of gliotransmitters, including ATP. Furthermore, slice electrophysiological recordings showed that activation of astrocytes by protease-activated receptors stimulated interneurons in the CA1 hippocampus to increase inhibitory postsynaptic currents on CA1 pyramidal cells. These results reveal a central role for CRAC channels as regulators of astrocyte Ca2+ signaling, gliotransmitter release, and astrocyte-mediated tonic inhibition of CA1 pyramidal neurons.


Subject(s)
Astrocytes/physiology , Calcium Signaling/physiology , Calcium/metabolism , GABAergic Neurons/physiology , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Adenosine Triphosphate/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , Calcium Release Activated Calcium Channels/genetics , Calcium Release Activated Calcium Channels/metabolism , Cells, Cultured , Exocytosis/physiology , Female , GABAergic Neurons/cytology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , ORAI1 Protein/genetics , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Stromal Interaction Molecule 1/genetics , Synaptic Transmission/physiology
13.
BMC Cancer ; 18(1): 872, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30185144

ABSTRACT

BACKGROUND: Adipose-tissue stem cells (ASCs) are subject of intensive research since their successful use in regenerative therapy. The drawback of ASCs is that they may serve as stroma for cancer cells and assist tumor progression. It is disquieting that ASCs frequently undergo genetic and epigenetic changes during their in vitro propagation. In this study, we describe the polyploidization of murine ASCs and the accompanying phenotypical, gene expressional and functional changes under long term culturing. METHODS: ASCs were isolated from visceral fat of C57BL/6 J mice, and cultured in vitro for prolonged time. The phenotypical changes were followed by microscopy and flow cytometry. Gene expressional changes were determined by differential transcriptome analysis and changes in protein expression were shown by Western blotting. The tumor growth promoting effect of ASCs was examined by co-culturing them with 4 T1 murine breast cancer cells. RESULTS: After five passages, the proliferation of ASCs decreases and cells enter a senescence-like state, from which a proportion of cells escape by polyploidization. The resulting ASC line is susceptible to adipogenic, osteogenic and chondrogenic differentiation, and expresses the stem cell markers CD29 and Sca-1 on an upregulated level. Differential transcriptome analysis of ASCs with normal and polyploid karyotype shows altered expression of genes that are involved in regulation of cancer, cellular growth and proliferation. We verified the increased expression of Klf4 and loss of Nestin on protein level. We found that elevated production of insulin-like growth factor 1 by polyploid ASCs rendered them more potent in tumor growth promotion in vitro. CONCLUSIONS: Our model indicates how ASCs with altered genetic background may support tumor progression.


Subject(s)
Adipose Tissue/cytology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Insulin-Like Growth Factor I/biosynthesis , Polyploidy , Stem Cells/cytology , Stem Cells/metabolism , Animals , Antigens, Surface/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Female , Flow Cytometry , Gene Expression Profiling , Humans , Karyotype , Kruppel-Like Factor 4 , Mice , Transcriptome
14.
Am J Physiol Gastrointest Liver Physiol ; 312(6): G606-G614, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28360028

ABSTRACT

Determination of fecal pancreatic elastase content by ELISA is a reliable, noninvasive clinical test for assessing exocrine pancreatic function. Despite the widespread use of commercial tests, their exact molecular targets remain poorly characterized. This study was undertaken to clarify which human pancreatic elastase isoforms are detected by the ScheBo Pancreatic Elastase 1 Stool Test and whether naturally occurring genetic variants influence the performance of this test. Using recombinantly expressed and purified human pancreatic proteinases, we found that the test specifically measured chymotrypsin-like elastases (CELA) 3A and 3B (CELA3A and CELA3B), while CELA2A was not detected. Inactive proelastases, active elastases, and autolyzed forms were detected with identical efficiency. CELA3B elicited approximately four times higher ELISA signal than CELA3A, and we identified Glu154 in CELA3B as the critical determinant of detection. Common genetic variants of CELA3A and CELA3B had no effect on test performance, with the exception of the CELA3B variant W79R, which increased detection by 1.4-fold. Finally, none of the human trypsin and chymotrypsin isoforms were detected. We conclude that the ScheBo Pancreatic Elastase 1 Stool Test is specific for human CELA3A and CELA3B, with most of the ELISA signal attributable to CELA3B.NEW & NOTEWORTHY The ScheBo Pancreatic Elastase 1 Stool Test is widely used to assess pancreatic exocrine function, yet its molecular targets have been poorly defined. We demonstrate that, among the human pancreatic proteinases, the test measures the elastase isoform CELA3B and, to a lesser extent, CELA3A. Genetic variants of the human CELA3 isoforms have no significant effect on test performance.


Subject(s)
Clinical Enzyme Tests/methods , Enzyme-Linked Immunosorbent Assay , Pancreatic Elastase/analysis , Feces/enzymology , Genetic Variation , HEK293 Cells , Humans , Isoenzymes , Pancreatic Elastase/genetics , Predictive Value of Tests , Reagent Kits, Diagnostic , Reproducibility of Results , Transfection
15.
Anal Chem ; 89(1): 603-610, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27760460

ABSTRACT

The ionization of LS samples in desorption ionization mass spectrometry (LS DESI MS), supplied continuously through a LS interface separated in space from the spray emitter, was investigated in this work. The role of electrochemistry (EC) in the ionization process was addressed. The visual (observation) of the operation of the LS DESI MS system showed a thick spray plume generated by the electrosonic spray ionization (ESSI), forming a liquid cone at the LS interface. When the LS interface was grounded the cone collapsed and the MS ion signal was lost, indicating that the LS was carried to the MS inlet by the spray that emerged from the cone. Ion signals in a new in-line LS DESI MS system, in angled LS DESI MS, and in electrospray ionization (ESI) MS, which produced the most intense ion signals from methanol/water solutions, and in ESSI MS, of dopamine (DA), tyrosine (Tyr) and N,N-dimethyl-p-phenylenediamine (DMPA), were evaluated using methanol/water and aqueous (aq) solutions. In addition, the effect on ion signals of geometric parameters and the LS and the spray solution flow rates was tested in in-line LS DESI MS. Of the methods tested, the analysis of aq LS containing electrolytes was simplest by LS DESI MS. The signal intensity was higher in in-line than in angled LS DESI MS. In online electrochemistry (EC)/LS DESI MS, when 0 V was applied to the EC cell Tyr ion signal was detected only at low pH (2).

16.
Int J Mol Sci ; 17(12): 2148, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27999401

ABSTRACT

Human chymotrypsin-like elastases 3A and 3B (CELA3A and CELA3B) are the products of gene duplication and share 92% identity in their primary structure. CELA3B forms stable complexes with procarboxypeptidases A1 and A2 whereas CELA3A binds poorly due to the evolutionary substitution of Ala241 with Gly in exon 7. Since position 241 is polymorphic both in CELA3A (p.G241A) and CELA3B (p.A241G), genetic analysis can directly assess whether individual variability in complex formation might alter risk for chronic pancreatitis. Here we sequenced exon 7 of CELA3A and CELA3B in a cohort of 225 subjects with chronic pancreatitis (120 alcoholic and 105 non-alcoholic) and 300 controls of Hungarian origin. Allele frequencies were 2.5% for CELA3A p.G241A and 1.5% for CELA3B p.A241G in controls, and no significant difference was observed in patients. Additionally, we identified six synonymous variants, two missense variants, a gene conversion event and ten variants in the flanking intronic regions. Variant c.643-7G>T in CELA3B showed an association with alcoholic chronic pancreatitis with a small protective effect (OR = 0.59, 95% CI = 0.39-0.89, p = 0.01). Functional analysis of missense variants revealed no major defects in secretion or activity. We conclude that variants affecting amino-acid position 241 in CELA3A and CELA3B are not associated with chronic pancreatitis, indicating that changes in complex formation between proelastases and procarboxypeptidases do not alter pancreatitis risk.


Subject(s)
Carboxypeptidases/metabolism , Enzyme Precursors/metabolism , Pancreatic Elastase/genetics , Pancreatic Elastase/metabolism , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/pathology , Base Sequence , Cell Line , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , HEK293 Cells , Humans , Male , Middle Aged , Mutation, Missense/genetics , Pancreas/pathology , Protein Binding , Sequence Analysis, DNA
17.
Ideggyogy Sz ; 69(1-2): 29-36, 2016 Jan 30.
Article in English | MEDLINE | ID: mdl-26987238

ABSTRACT

BACKGROUND: Although stroke mortality rate in Hungary has tapered off over the last years, it is still twice the European average. This statistic is alarming and a coordinated response is needed to deal with this situation when considering new ways of communication. There are currently more than 300 websites in Hungarian related to stroke prevention, acute stroke treatment, recovery and rehabilitation. AIMS AND/OR HYPOTHESIS: We sought to identify base level of stroke knowledge of the Hungarian students and the efficiency with which the knowledge disseminated by internet is actually utilized. METHODS: We surveyed 321 high-school and university students to determine their ability to extract specific information regarding stroke from Hungarian websites. The base level of knowledge was established by asking 15 structured, close-ended questions. After completing the questionnaire, students were asked to search individually on stroke in the internet where all the correct answers were available. After a 25-min search session they answered the same questionnaire. We recorded and analyzed all their internet activity during the search period. RESULTS: The students displayed a fair knowledge on the basics of stroke but their results did not change significantly after the 25-min search (53 +/- 13% vs. 63 +/- 14%). Only correct information given on demographic facts improved significantly. Most of the students used very simple search strategies and engines and only the first 5-10 web-pages were visited. CONCLUSION: Analysis of the most often visited web-pages revealed that although stroke-related Hungarian web-based resources contain almost all the important and required information the unsuitable structure, lack of simplicity and verbosity hinder their effective public utilization.


Subject(s)
Health Knowledge, Attitudes, Practice , Information Dissemination/methods , Internet , Stroke/prevention & control , Adolescent , Awareness , Female , Humans , Hungary/epidemiology , Male , Self Report , Stroke/mortality , Young Adult
18.
Cell Calcium ; 59(2-3): 124-34, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27020657

ABSTRACT

Calcium (Ca(2+)) signaling has essential roles in the development of the nervous system from neural induction to the proliferation, migration, and differentiation of neural cells. Ca(2+) signaling pathways are shaped by interactions among metabotropic signaling cascades, intracellular Ca(2+) stores, ion channels, and a multitude of downstream effector proteins that activate specific genetic programs. The temporal and spatial dynamics of Ca(2+) signals are widely presumed to control the highly diverse yet specific genetic programs that establish the complex structures of the adult nervous system. Progress in the last two decades has led to significant advances in our understanding of the functional architecture of Ca(2+) signaling networks involved in neurogenesis. In this review, we assess the literature on the molecular and functional organization of Ca(2+) signaling networks in the developing nervous system and its impact on neural induction, gene expression, proliferation, migration, and differentiation. Particular emphasis is placed on the growing evidence for the involvement of store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels in these processes.


Subject(s)
Calcium Signaling , Calcium/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Neurons/cytology , Neurons/metabolism , Animals , Cell Movement , Cell Proliferation , Humans
19.
Anal Bioanal Chem ; 408(9): 2227-38, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26886744

ABSTRACT

A new online electrochemistry/liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS) system with a simple electrochemical thin-layer flow-through cell was developed and tested using N,N-dimethyl-p-phenylenediamine (DMPA) as a model probe. Although oxidation of DMPA is observed as a result of ionization of LS in positive ion mode LS DESI, application of voltage to the online electrochemical (EC) cell in EC/LS DESI MS increases yields of oxidation products. An advantage of LS DESI MS is its sensitivity in aqueous electrolyte solutions, which improves efficiency of electrochemical reactions in EC/LS DESI MS. In highly conductive low pH aqueous buffer solutions, oxidation efficiency is close to 100%. EC/ESI MS typically requires mixed aqueous/organic solvents and low electrolyte concentrations for efficient ionization in MS, limiting efficiency of electrochemistry online with MS. Independently, the results verify higher electrochemical oxidation efficiency during positive mode ESI than during LS DESI.

20.
Digestion ; 93(2): 121-6, 2016.
Article in English | MEDLINE | ID: mdl-26641250

ABSTRACT

BACKGROUND: There are unexpectedly large differences between the incidences of acute pancreatitis (AP) as indicated by different hospitals. Retrospective studies suggest that the reason behind this is the large differences that exist between the local managements of abdominal pain at emergency units. Unfortunately, no evidence-based medicine (EBM) guidelines are available to give proper instruction concerning the necessity of serum pancreatic enzyme measurement during abdominal pain. SUMMARY: Pain in Early Phase of Pediatric Pancreatitis (PINEAPPLE) is an observational, multinational observational clinical trial to explore the route from the first sign of abdominal pain to the diagnosis of pancreatitis (PINEAPPLE trial). The PINEAPPLE-R subtrial is a retrospective review on the records of children (patients under 18) appearing at emergency units - a review of their clinical symptoms, results of imaging examinations and laboratory parameters. The PINEAPPLE-P subtrial is a prospective trial designed to develop a fast and simple EBM guideline that helps to evaluate (in a reliable and cost-efficient way) the necessity of pancreatic enzyme test and abdominal ultrasonography (or even computed tomography) when a child has abdominal pain. The trial has been registered at the ISRCTN registry and has received the relevant ethical approval. KEY MESSAGE: The PINEAPPLE trial will help to recognize AP in children in a highly efficient manner.


Subject(s)
Abdominal Pain/diagnosis , Pancreatitis/diagnosis , Abdominal Pain/enzymology , Abdominal Pain/etiology , Adolescent , Child , Child, Preschool , Emergency Service, Hospital , Evidence-Based Medicine , Female , Humans , Infant , Infant, Newborn , Male , Pancreas/diagnostic imaging , Pancreatitis/complications , Pancreatitis/enzymology , Prospective Studies , Retrospective Studies , Time Factors , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...