Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Pediatr Allergy Immunol Pulmonol ; 37(2): 51-55, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38940669

ABSTRACT

Background: Food protein-induced enterocolitis syndrome (FPIES) is a non-IgE-mediated food allergy characterized by gastrointestinal symptom onset within 1-4 hours from trigger food ingestion. In the literature, some authors have previously described the possibility that a patient with FPIES may develop an IgE-mediated allergy to the same trigger food, especially cow's milk (CM). Case Presentation: We reported five cases of CM-FPIES converting to IgE-mediated CM allergy presented at our tertiary pediatric Allergy Unit and performed a review of the literature, aiming to characterize the clinical features of patients who are at risk of developing such conversion. Conclusions: This phenomenon raises the question of whether IgE-mediated and non-IgE-mediated allergies represent a spectrum of the same disease and highlights the need for further investigation to understand the pathophysiological mechanisms of this process.


Subject(s)
Enterocolitis , Immunoglobulin E , Milk Hypersensitivity , Humans , Enterocolitis/immunology , Enterocolitis/etiology , Enterocolitis/diagnosis , Milk Hypersensitivity/immunology , Milk Hypersensitivity/diagnosis , Immunoglobulin E/immunology , Immunoglobulin E/blood , Female , Infant , Male , Animals , Milk Proteins/adverse effects , Milk Proteins/immunology , Syndrome , Child, Preschool , Cattle , Milk/adverse effects , Milk/immunology , Food Hypersensitivity/immunology , Food Hypersensitivity/etiology , Food Hypersensitivity/diagnosis
2.
Geroscience ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630423

ABSTRACT

Both heart failure with preserved ejection fraction (HFpEF) and non-alcoholic fatty liver disease (NAFLD) develop due to metabolic dysregulation, has similar risk factors (e.g., insulin resistance, systemic inflammation) and are unresolved clinical challenges. Therefore, the potential link between the two disease is important to study. We aimed to evaluate whether NASH is an independent factor of cardiac dysfunction and to investigate the age dependent effects of NASH on cardiac function. C57Bl/6 J middle aged (10 months old) and aged mice (24 months old) were fed either control or choline deficient (CDAA) diet for 8 weeks. Before termination, echocardiography was performed. Upon termination, organ samples were isolated for histological and molecular analysis. CDAA diet led to the development of NASH in both age groups, without inducing weight gain, allowing to study the direct effect of NASH on cardiac function. Mice with NASH developed hepatomegaly, fibrosis, and inflammation. Aged animals had increased heart weight. Conventional echocardiography revealed normal systolic function in all cohorts, while increased left ventricular volumes in aged mice. Two-dimensional speckle tracking echocardiography showed subtle systolic and diastolic deterioration in aged mice with NASH. Histologic analyses of cardiac samples showed increased cross-sectional area, pronounced fibrosis and Col1a1 gene expression, and elevated intracardiac CD68+ macrophage count with increased Il1b expression. Conventional echocardiography failed to reveal subtle change in myocardial function; however, 2D speckle tracking echocardiography was able to identify diastolic deterioration. NASH had greater impact on aged animals resulting in cardiac hypertrophy, fibrosis, and inflammation.

3.
Sci Rep ; 13(1): 22451, 2023 12 17.
Article in English | MEDLINE | ID: mdl-38105266

ABSTRACT

Previously, the presence of a blood-myenteric plexus barrier and its disruption was reported in experimentally induced colitis via a macrophage-dependent process. The aim of this study is to reveal how myenteric barrier disruption and subsequent neuronal injury affects gut motility in vivo in a murine colitis model. We induced colitis with dextran sulfate sodium (DSS), with the co-administration of liposome-encapsulated clodronate (L-clodronate) to simultaneously deplete blood monocytes contributing to macrophage infiltration in the inflamed muscularis of experimental mice. DSS-treated animals receiving concurrent L-clodronate injection showed significantly decreased blood monocyte numbers and colon muscularis macrophage (MM) density compared to DSS-treated control (DSS-vehicle). DSS-clodronate-treated mice exhibited significantly slower whole gut transit time than DSS-vehicle-treated animals and comparable to that of controls. Experiments with oral gavage-fed Evans-blue dye showed similar whole gut transit times in DSS-clodronate-treated mice as in control animals. Furthermore, qPCR-analysis and immunofluorescence on colon muscularis samples revealed that factors associated with neuroinflammation and neurodegeneration, including Bax1, Hdac4, IL-18, Casp8 and Hif1a are overexpressed after DSS-treatment, but not in the case of concurrent L-clodronate administration. Our findings highlight that MM-infiltration in the muscularis layer is responsible for colitis-associated dysmotility and enteric neuronal dysfunction along with the release of mediators associated with neurodegeneration in a murine experimental model.


Subject(s)
Clodronic Acid , Colitis , Mice , Animals , Clodronic Acid/pharmacology , Colitis/chemically induced , Inflammation , Macrophages , Colon , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Disease Models, Animal
4.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762130

ABSTRACT

The identification of novel drug targets is needed to improve the outcomes of heart failure (HF). G-protein-coupled receptors (GPCRs) represent the largest family of targets for already approved drugs, thus providing an opportunity for drug repurposing. Here, we aimed (i) to investigate the differential expressions of 288 cardiac GPCRs via droplet digital PCR (ddPCR) and bulk RNA sequencing (RNAseq) in a rat model of left ventricular pressure-overload; (ii) to compare RNAseq findings with those of ddPCR; and (iii) to screen and test for novel, translatable GPCR drug targets in HF. Male Wistar rats subjected to transverse aortic constriction (TAC, n = 5) showed significant systolic dysfunction vs. sham operated animals (SHAM, n = 5) via echocardiography. In TAC vs. SHAM hearts, RNAseq identified 69, and ddPCR identified 27 significantly differentially expressed GPCR mRNAs, 8 of which were identified using both methods, thus showing a correlation between the two methods. Of these, Prostaglandin-F2α-receptor (Ptgfr) was further investigated and localized on cardiomyocytes and fibroblasts in murine hearts via RNA-Scope. Antagonizing Ptgfr via AL-8810 reverted angiotensin-II-induced cardiomyocyte hypertrophy in vitro. In conclusion, using ddPCR as a novel screening method, we were able to identify GPCR targets in HF. We also show that the antagonism of Ptgfr could be a novel target in HF by alleviating cardiomyocyte hypertrophy.


Subject(s)
Heart Failure , Male , Rats , Mice , Animals , Rats, Wistar , Heart Failure/genetics , Myocytes, Cardiac , Polymerase Chain Reaction , Hypertrophy
5.
Sci Rep ; 13(1): 356, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611037

ABSTRACT

Interleukin-1ß (IL-1ß) is a key mediator of non-alcoholic steatohepatitis (NASH), a chronic liver disease, and of systemic inflammation-driven aging. IL-1ß contributes to cardio-metabolic decline, and may promote hepatic oncogenic transformation. Therefore, IL-1ß is a potential therapeutic target in these pathologies. We aimed to investigate the hepatic and cardiac effects of an IL-1ß targeting monoclonal antibody in an aged mouse model of NASH. 24 months old male C57Bl/6J mice were fed with control or choline deficient (CDAA) diet and were treated with isotype control or anti-IL-1ß Mab for 8 weeks. Cardiac functions were assessed by conventional-and 2D speckle tracking echocardiography. Liver samples were analyzed by immunohistochemistry and qRT-PCR. Echocardiography revealed improved cardiac diastolic function in anti-IL-1ß treated mice with NASH. Marked hepatic fibrosis developed in CDAA-fed group, but IL-1ß inhibition affected fibrosis only at transcriptomic level. Hepatic inflammation was not affected by the IL-1ß inhibitor. PCNA staining revealed intensive hepatocyte proliferation in CDAA-fed animals, which was not influenced by neutralization of IL-1ß. IL-1ß inhibition increased hepatic expression of Pd-1 and Ctla4, while Pd-l1 expression increased in NASH. In conclusion, IL-1ß inhibition improved cardiac diastolic function, but did not ameliorate features of NASH; moreover, even promoted hepatic immune checkpoint expression, with concomitant NASH-related hepatocellular proliferation.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Interleukin-1beta/metabolism , Liver/metabolism , Liver Cirrhosis/pathology , Disease Models, Animal , Fibrosis , Mice, Inbred C57BL
6.
Br J Pharmacol ; 180(6): 740-761, 2023 03.
Article in English | MEDLINE | ID: mdl-36356191

ABSTRACT

BACKGROUND AND PURPOSE: Immune checkpoint inhibitors (ICI), such as anti-PD-1 monoclonal antibodies, have revolutionized cancer therapy by enhancing the cytotoxic effects of T-cells against tumours. However, enhanced T-cell activity also may cause myocarditis and cardiotoxicity. Our understanding of the mechanisms of ICI-induced cardiotoxicity is limited. Here, we aimed to investigate the effect of PD-1 inhibition on cardiac function and explore the molecular mechanisms of ICI-induced cardiotoxicity. EXPERIMENTAL APPROACH: C57BL6/J and BALB/c mice were treated with isotype control or anti-PD-1 antibody. Echocardiography was used to assess cardiac function. Cardiac transcriptomic changes were investigated by bulk RNA sequencing. Inflammatory changes were assessed by qRT-PCR and immunohistochemistry in heart, thymus, and spleen of the animals. In follow-up experiments, anti-CD4 and anti-IL-17A antibodies were used along with PD-1 blockade in C57BL/6J mice. KEY RESULTS: Anti-PD-1 treatment led to cardiac dysfunction and left ventricular dilation in C57BL/6J mice, with increased nitrosative stress. Only mild inflammation was observed in the heart. However, PD-1 inhibition resulted in enhanced thymic inflammatory signalling, where Il17a increased most prominently. In BALB/c mice, cardiac dysfunction was not evident, and thymic inflammatory activation was more balanced. Inhibition of IL-17A prevented anti-PD-1-induced cardiac dysfunction in C57BL6/J mice. Comparing myocardial transcriptomic changes in C57BL/6J and BALB/c mice, differentially regulated genes (Dmd, Ass1, Chrm2, Nfkbia, Stat3, Gsk3b, Cxcl9, Fxyd2, and Ldb3) were revealed, related to cardiac structure, signalling, and inflammation. CONCLUSIONS: PD-1 blockade induces cardiac dysfunction in mice with increased IL-17 signalling in the thymus. Pharmacological inhibition of IL-17A treatment prevents ICI-induced cardiac dysfunction.


Subject(s)
Cardiotoxicity , Heart Diseases , Mice , Animals , Cardiotoxicity/etiology , Immune Checkpoint Inhibitors/adverse effects , Interleukin-17 , Mice, Inbred C57BL , Inflammation/complications
7.
Transplant Proc ; 54(9): 2608-2611, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36411095

ABSTRACT

Lung transplant recipients are at risk for life-threatening infections including severe acute respiratory syndrome coronavirus 2-associated COVID-19. Several viral infections have been associated with the development of chronic lung allograft dysfunction. Long-term outcomes of COVID-19 on graft function are not known. A 53-year-old female patient, who underwent bilateral lung transplantation 3 years before because of stage IV sarcoidosis and secondary pulmonary hypertension was admitted in the second wave of the pandemic because of COVID-19 with symptoms including dry cough. Chest computed tomography showed ground glass opacities affecting 25% to 50% of the lung parenchyma. She was admitted to the COVID-19 Unit of our clinic. She received oxygen via nasal cannula, remdesivir, and low-dose methylprednisolone while mycofenolate acid administration was stopped. Her clinical condition improved. The first follow-up visit 1 month after the infection demonstrated deterioration in lung function. Computed tomography scan showed almost complete resolution; transbronchial biopsy was performed and proved acute allograft rejection. During the hospitalization a new onset atrial fibrillation was confirmed. In the background of atrial fibrillation and simultaneous neck pain, severe hyperthyroidism was proven. Because of thyroiditis and lung allograft rejection, high-dose steroid treatment was initiated and everolimus was added to the immunosuppressive therapy. Donor specific antibodies were also detected, hence plasmapheresis was indicated and continued with photoferesis. On the follow-up spirometry the values were stable; however, they did not reach pre-COVID levels. In lung transplant recipients COVID-19 might trigger allograft rejection in addition to virus-related thyroid disease.


Subject(s)
Atrial Fibrillation , Bronchiolitis , COVID-19 , Lung Transplantation , Thyroiditis, Subacute , Humans , Female , Middle Aged , Transplant Recipients , Graft Rejection/etiology , Thyroiditis, Subacute/pathology , COVID-19/pathology , Lung Transplantation/adverse effects , Lung/pathology , Bronchiolitis/pathology
8.
Biomedicines ; 10(7)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35884882

ABSTRACT

Dipeptidyl-peptidase-4 (DPP4) inhibitors are novel medicines for diabetes. The SAVOR-TIMI-53 clinical trial revealed increased heart-failure-associated hospitalization in saxagliptin-treated patients. Although this side effect could limit therapeutic use, the mechanism of this potential cardiotoxicity is unclear. We aimed to establish a cellular platform to investigate DPP4 inhibition and the role of its neuropeptide substrates substance P (SP) and neuropeptide Y (NPY), and to determine the expression of DDP4 and its neuropeptide substrates in the human heart. Western blot, radio-, enzyme-linked immuno-, and RNA scope assays were performed to investigate the expression of DPP4 and its substrates in human hearts. Calcein-based viability measurements and scratch assays were used to test the potential toxicity of DPP4 inhibitors. Cardiac expression of DPP4 and NPY decreased in heart failure patients. In human hearts, DPP4 mRNA is detectable mainly in cardiomyocytes and endothelium. Treatment with DPP4 inhibitors alone/in combination with neuropeptides did not affect viability but in scratch assays neuropeptides decreased, while saxagliptin co-administration increased fibroblast migration in isolated neonatal rat cardiomyocyte-fibroblast co-culture. Decreased DPP4 activity takes part in the pathophysiology of end-stage heart failure. DPP4 compensates against the elevated sympathetic activity and altered neuropeptide tone. Its inhibition decreases this adaptive mechanism, thereby exacerbating myocardial damage.

9.
Insects ; 13(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35206697

ABSTRACT

The sycamore lace bug (Corythucha ciliata Say, 1832) is of North American origin, but after its introduction to Europe (1964), South America (1985), Asia (1995), Australia (2006), and Africa (2014), it became an abundant and widespread pest on plane (Platanus spp.) trees. We analysed a 1356 bp long fragment of the mtDNA (COI gene) of 327 sycamore lace bug individuals from 38 geographic locations from Europe, Asia, and North America. Seventeen haplotypes (17 HTs) were detected. C. ciliata populations from North America exhibited higher haplotype diversity (12 HTs) than populations from Europe (6 HTs), Asia (4 HTs), or Japan (2 HTs). The haplotypes formed two haplogroups separated by at least seven mutation steps. One of these mutation steps includes HTs from North America and Japan. Another includes HTs from North America, Europe, and Asia. Haplotypes from Asia Minor, the Caucasus, and Central Asia are linked to haplotypes from Europe, while haplotypes found in Japan are linked to haplotypes found in North America only. The incorporation of published data from the GenBank into our dataset (altogether 517 individuals from 57 locations, but only 546 bp long fragment of the mtDNA) did not show any structure according to the geographic origin of the individuals.

10.
J Mol Cell Cardiol ; 165: 19-30, 2022 04.
Article in English | MEDLINE | ID: mdl-34959166

ABSTRACT

BACKGROUND: Cardiac cell lines and primary cells are widely used in cardiovascular research. Despite increasing number of publications using these models, comparative characterization of these cell lines has not been performed, therefore, their limitations are undetermined. We aimed to compare cardiac cell lines to primary cardiomyocytes and to mature cardiac tissues in a systematic manner. METHODS AND RESULTS: Cardiac cell lines (H9C2, AC16, HL-1) were differentiated with widely used protocols. Left ventricular tissue, neonatal primary cardiomyocytes, and human induced pluripotent stem cell-derived cardiomyocytes served as reference tissue or cells. RNA expression of cardiac markers (e.g. Tnnt2, Ryr2) was markedly lower in cell lines compared to references. Differentiation induced increase in cardiac- and decrease in embryonic markers however, the overall transcriptomic profile and annotation to relevant biological processes showed consistently less pronounced cardiac phenotype in all cell lines in comparison to the corresponding references. Immunocytochemistry confirmed low expressions of structural protein sarcomeric alpha-actinin, troponin I and caveolin-3 in cell lines. Susceptibility of cell lines to sI/R injury in terms of viability as well as mitochondrial polarization differed from the primary cells irrespective of their degree of differentiation. CONCLUSION: Expression patterns of cardiomyocyte markers and whole transcriptomic profile, as well as response to sI/R, and to hypertrophic stimuli indicate low-to-moderate similarity of cell lines to primary cells/cardiac tissues regardless their differentiation. Low resemblance of cell lines to mature adult cardiac tissue limits their potential use. Low translational value should be taken into account while choosing a particular cell line to model cardiomyocytes.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Biomarkers/metabolism , Cell Differentiation/genetics , Cell Line , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Myocytes, Cardiac/metabolism , Phenotype , Transcriptome
11.
Cell Mol Gastroenterol Hepatol ; 12(5): 1617-1641, 2021.
Article in English | MEDLINE | ID: mdl-34246810

ABSTRACT

BACKGROUND & AIMS: Neuroinflammation in the gut is associated with many gastrointestinal (GI) diseases, including inflammatory bowel disease. In the brain, neuroinflammatory conditions are associated with blood-brain barrier (BBB) disruption and subsequent neuronal injury. We sought to determine whether the enteric nervous system is similarly protected by a physical barrier and whether that barrier is disrupted in colitis. METHODS: Confocal and electron microscopy were used to characterize myenteric plexus structure, and FITC-dextran assays were used to assess for presence of a barrier. Colitis was induced with dextran sulfate sodium, with co-administration of liposome-encapsulated clodronate to deplete macrophages. RESULTS: We identified a blood-myenteric barrier (BMB) consisting of extracellular matrix proteins (agrin and collagen-4) and glial end-feet, reminiscent of the BBB, surrounded by a collagen-rich periganglionic space. The BMB is impermeable to the passive movement of 4 kDa FITC-dextran particles. A population of macrophages is present within enteric ganglia (intraganglionic macrophages [IGMs]) and exhibits a distinct morphology from muscularis macrophages, with extensive cytoplasmic vacuolization and mitochondrial swelling but without signs of apoptosis. IGMs can penetrate the BMB in physiological conditions and establish direct contact with neurons and glia. Dextran sulfate sodium-induced colitis leads to BMB disruption, loss of its barrier integrity, and increased numbers of IGMs in a macrophage-dependent process. CONCLUSIONS: In intestinal inflammation, macrophage-mediated degradation of the BMB disrupts its physiological barrier function, eliminates the separation of the intra- and extra-ganglionic compartments, and allows inflammatory stimuli to access the myenteric plexus. This suggests a potential mechanism for the onset of neuroinflammation in colitis and other GI pathologies with acquired enteric neuronal dysfunction.


Subject(s)
Colitis/etiology , Colitis/metabolism , Macrophages/immunology , Macrophages/metabolism , Myenteric Plexus/cytology , Myenteric Plexus/metabolism , Animals , Biomarkers , Colitis/pathology , Disease Models, Animal , Disease Susceptibility , Enteric Nervous System/immunology , Enteric Nervous System/metabolism , Extracellular Matrix , Fluorescent Antibody Technique , Immunohistochemistry , Immunophenotyping , Mice , Myenteric Plexus/ultrastructure , Neuroglia/metabolism , Neuroglia/ultrastructure , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neutrophil Infiltration
12.
Cardiovasc Res ; 117(13): 2639-2651, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34117866

ABSTRACT

AIMS: Interleukin-1ß (IL-1ß) is an important pathogenic factor in cardiovascular diseases including chronic heart failure (HF). The CANTOS trial highlighted that inflammasomes as primary sources of IL-1 ß are promising new therapeutic targets in cardiovascular diseases. Therefore, we aimed to assess inflammasome activation in failing hearts to identify activation patterns of inflammasome subtypes as sources of IL-1ß. METHODS AND RESULTS: Out of the four major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human HF regardless of the aetiology (ischaemic or dilated cardiomyopathy), while the NLRP1/NALP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change in HF samples. AIM2 expression was primarily detected in monocytes/macrophages of failing hearts. Translational animal models of HF (pressure or volume overload, and permanent coronary artery ligation in rat, as well as ischaemia/reperfusion-induced HF in pigs) demonstrated activation pattern of AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 inflammasome activation in human Tohoku Hospital Pediatrics-1 (THP-1) monocytic cells and human AC16 cells was significantly reduced by pharmacological blockade of pannexin-1 channels by the clinically used uricosuric drug probenecid. Probenecid was also able to reduce pressure overload-induced mortality and restore indices of disease severity in a rat chronic HF model in vivo. CONCLUSIONS: This is the first report showing that AIM2 and NLRC4 inflammasome activation contribute to chronic inflammation in HF and that probenecid alleviates chronic HF by reducing inflammasome activation. The present translational study suggests the possibility of repositioning probenecid for HF indications.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Heart Failure/metabolism , Inflammasomes/metabolism , Myocytes, Cardiac/metabolism , Receptors, Cell Surface/metabolism , Adolescent , Adult , Aged , Animals , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/immunology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/immunology , Case-Control Studies , Connexins/antagonists & inhibitors , Connexins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Disease Models, Animal , Female , Heart Failure/drug therapy , Heart Failure/immunology , Heart Failure/physiopathology , Humans , Inflammasomes/immunology , Male , Middle Aged , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/immunology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Probenecid/pharmacology , Rats, Wistar , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Signal Transduction , Sus scrofa , THP-1 Cells , Ventricular Function, Left , Young Adult
13.
Front Physiol ; 12: 609465, 2021.
Article in English | MEDLINE | ID: mdl-33692700

ABSTRACT

BACKGROUND: The prevalence of non-alcoholic steatohepatitis (NASH) rapidly increases with associated metabolic disorders such as dyslipidemia; therefore, NASH is now considered an independent risk factor of cardiovascular diseases. NASH displays sex-linked epidemiological, phenotypical, and molecular differences; however, little is known about the background of these sex-specific differences on the molecular level. OBJECTIVES: We aimed to assess sex-specific differences in the expression of inflammatory and fibrotic genes, as well as in cholesterol metabolism, focusing on the expression of Pcsk9 in several tissues in a mouse model of NASH that shows the typical features of the human condition. METHODS AND RESULTS: We fed 10-months-old male and female C57Bl/6J mice with a NASH-inducing CDAA or corresponding control diet for 8 weeks. We found that, compared to the control male mice baseline, hepatic Pcsk9 expression as well as serum PCSK9 level was significantly higher in females, and both circulating PCSK9 level and the hepatic Pcsk9 gene were markedly decreased in female mice during NASH development. Histological analysis revealed that male and female mice develop a similar degree of steatosis; however, fibrosis was more pronounced in males upon CDAA diet feeding. Strikingly, female mice have higher hepatic expression of the pro-inflammatory cytokines (Il1b, Ifng), and increased IL-1ß cleavage by the NLRP3 inflammasome, and a decrease in Clec4f+ resident Kupffer cell population in comparison to males in the CDAA-fed groups. CONCLUSION: This is the first demonstration that there are critical sex-specific differences during NASH development in middle-aged mice regarding inflammation, fibrosis, and cholesterol metabolism and that changes in PCSK9 and IL-1ß are likely important contributors to sex-specific changes during the transition to NASH.

14.
Insects ; 11(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414032

ABSTRACT

The Collembolan genus Lepidocyrtus is subdivided into up to eight subgenera, of which only Lepidocyrtus s.str. (Bourlet, 1839) and Lanocyrtus (Yoshii & Suhardjono, 1989) are represented by European species. The discovery of unique characters in the European species Lepidocyrtus tomosvaryi (rounded dental tubercle) and L. peisonis (lateral tuft of long filiform chaetae in abdomen III) has only described so far for species of the subgenera Setogaster (Salmon, 1951) and Cinctocyrtus (Yoshii & Suhardjono, 1989) and has raised the need to perform a molecular analysis by involving other representative species of the genus. For this study, phylogenetic analysis of 15 Lepidocyrtus species occurring in the Carpathian Basin were carried out. The analyses, which was based on both concatenated datasets of COII and EF1-α sequences and individual gene sequences, clearly placed L. tomosvaryi within the subgenus Lanocyrtus and L. peisonis within Lepidocyrtus s.srt. European species groups defined on the basis of morphological characters were only partly confirmed by the concatenated and COII analyses because of the splitting of the pallidus-serbicus-group, whereas EF1- α sequences weakly supported this group.

15.
Orv Hetil ; 161(15): 594-600, 2020 04 01.
Article in Hungarian | MEDLINE | ID: mdl-32323963

ABSTRACT

Introduction: Anxiolytic drug dependence is a cause for growing concern worldwide including Hungary. Psychiatric patients and patients with other drug addictions are at increased risk for anxiolytic drug dependence. Yet, there is only limited scientific information about the real extent of this issue. Aim: To examine the frequency of use of benzodiazepine-containing drugs and comparing the consumption habits of patients treated in psychiatric and addiction rehabilitation wards in a hospital in Budapest. Method: The survey was based on an anonymously and voluntarily completed questionnaire during a face-to-face interview of 103 patients in two wards. The 19-item questionnaire targeted anxiolytic drug use and related behavioral patterns. Statistical analysis: Socio-demographic data were given with means and standard deviations or with percentages as appropriate. For the comparison between the two groups of patients, t-test, Mann­Whitney U-test or chi-square test were used in accordance with the distribution of the sample. Results: Symptoms indicating anxiolytic dependence, use of multiple anxiolytics, and combination of anxiolytic drugs with alcohol were very frequent in both wards. However, there were some significant differences between the two samples. Anxiolytic drug abuse and illicit drug use were significantly more frequent in patients at the addiction ward. Indicators of social status, particularly the place of residence, significantly influenced non-prescription misuse of anxiolytic drugs. Conclusions: The results draw attention to the high frequency of anxiolytic drug misuse and dependence in psychiatric and addiction patients warranting urgent action to confront this challenge. Orv Hetil. 2020; 161(15): 594­600.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Anxiety Disorders/drug therapy , Hypnotics and Sedatives/therapeutic use , Substance-Related Disorders/complications , Anti-Anxiety Agents/adverse effects , Anxiety Disorders/diagnosis , Anxiety Disorders/psychology , Humans , Hungary , Hypnotics and Sedatives/adverse effects , Substance-Related Disorders/rehabilitation , Surveys and Questionnaires
16.
Pharmacol Res ; 151: 104578, 2020 01.
Article in English | MEDLINE | ID: mdl-31794870

ABSTRACT

AIM: Acute myocardial infarction and subsequent post-infarction heart failure are among the leading causes of mortality worldwide. The endocannabinoid system has emerged as an important modulator of cardiovascular disease, however the role of endocannabinoid metabolic enzymes in heart failure is still elusive. Herein, we investigated the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. METHODS AND RESULTS: Quantitative real-time PCR, targeted lipidomics, and activity-based protein profiling (ABPP) enabled assessment of the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. Based on lipidomic analysis, two subgroups were identified within the ischemic heart failure group; the first similar to control hearts and the second with decreased levels of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and drastically increased levels of the endocannabinoid anandamide (AEA), other N-acylethanolamines (NAEs) and free fatty acids. The altered lipid profile was accompanied by strong reductions in the activity of 13 hydrolases, including the 2-AG hydrolytic enzyme monoacylglycerol lipase (MGLL). CONCLUSIONS: Our findings suggest the presence of different biological states within the ischemic heart failure group, based on alterations in the lipid and hydrolase activity profiles. In addition, this study demonstrates that ABPP is a valuable tool to rapidly analyze enzyme activity in clinical samples with potential for novel drug and biomarker discovery.


Subject(s)
Endocannabinoids/metabolism , Heart Failure/metabolism , Hydrolases/metabolism , Myocardial Ischemia/metabolism , Adult , Female , Humans , Lipidomics , Male , Middle Aged , Myocardial Infarction/metabolism , Proteomics
17.
Molecules ; 24(20)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615035

ABSTRACT

Poly(ethyleneimine) (PEI) is a weakly basic, synthetic, polycationic polymer, due to the presence of primary, secondary, and tertiary amino groups. The amino groups are responsible for the variety of applications of PEI (e.g., transfection, bioimaging, solar cell, etc.). Our study presents some new and reproducible methods for the quantification of molecular or mass concentration of highly branched PEI of different molecular weights (800-2000-25,000-750,000 MW PEI). In the course of the direct method, spectrophotometry and fluorometry were applied to determine the absorption and fluorescence of PEI dilution series. An increase in the MW at the same concentration produces a higher count number because of the higher number of amino groups in PEI molecules. The character of increment in fluorescence intensity is essentially different in the case of mass concentrations and molar concentrations. The increment of the fluorescence intensity related to the molar concentration is non-linear. In the case of mass concentration, the slope is linear. Moreover, their fluorescence is enhanced with the decrease in pH values. The spectrophotometry is a reliable method for measuring the quantity of PEI molecules in solution. Our data help in recognizing the detailed properties of PEI in dendrimer research.


Subject(s)
Dendrimers/chemistry , Fluorescence , Polyethyleneimine/chemistry , Aziridines/chemistry , Cations/chemistry , Hydrogen-Ion Concentration , Molecular Weight , Polymers/chemistry
18.
BMC Evol Biol ; 18(1): 135, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30189856

ABSTRACT

BACKGROUND: The plane leaf miner, Phyllonorycter platani is a widely distributed insect species on plane trees and has a well-documented colonisation history in Europe over the last century. However, phylogeographic data of the species are lacking. RESULTS: We analysed 284 individuals from 38 populations across Europe, Asia, and North America. A 1242 bp fragment of the mitochondrial COI gene and an 893 bp fragment of the 28S rDNA has been Sanger sequenced. Twenty-four haplotypes were detected on the COI gene, and two alleles were identified on the 28S rDNA. We revealed two distinct clades for both markers reflecting the geographic origins, Asia and Europe. The genetic distance between the two main clades is 2.08% on the COI gene and 0.10% on the nuclear DNA. An overlapping zone of the two clades was found across Eastern Europe and the Anatolian Peninsula. We detected heterozygote individuals of the 28S rDNA gene in Moldavia, Ukraine and in the southern part of Turkey. These suggest that the two clades can hybridise. Furthermore, the presence of European type homozygote individuals has been confirmed in the southern part of Turkey as well. CONCLUSIONS: We have shown that both post-glacial recolonization and recent expansion events influenced the present genetic structure of P. platani. The genetic patterns revealed at least two refugia during the last ice age: one in the Balkan Peninsula and the other in the Caucasus region. Recent expansion was detected in some European and Central Asian populations. The two main clades (Europe/Asia) show definite genetic differences; however, several hybrid individuals were found in the overlapping zone as well (stretching over Eastern Europe and the Anatolian Peninsula). Discrepancies in mitochondrial and nuclear data indicate introgressions in the southern part of the Anatolian Peninsula.


Subject(s)
Lepidoptera/classification , Phylogeography , Plant Leaves/parasitology , Alleles , Animals , Base Sequence , DNA, Ribosomal/genetics , Electron Transport Complex IV/genetics , Europe , Genetic Markers , Genetic Variation , Haplotypes/genetics , Lepidoptera/genetics , Phylogeny
19.
Inflammopharmacology ; 25(1): 107-118, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27873165

ABSTRACT

Imidazoline receptors (IRs) have been recognized as promising targets in the treatment of numerous diseases; and moxonidine and rilmenidine, agonists of I1-IRs, are widely used as antihypertensive agents. Some evidence suggests that IR ligands may induce anti-inflammatory effects acting on I1-IRs or other molecular targets, which could be beneficial in patients with inflammatory bowel disease (IBD). On the other hand, several IR ligands may stimulate also alpha2-adrenoceptors, which were earlier shown to inhibit, but in more recent studies to rather aggravate colitis. Hence, this study aimed to analyse for the first time the effect of various I1-IR ligands on intestinal inflammation. Colitis was induced in C57BL/6 mice by adding dextran sulphate sodium (DSS) to the drinking water for 7 days. Mice were treated daily with different IR ligands: moxonidine and rilmenidine (I1-IR agonists), AGN 192403 (highly selective I1-IR ligand, putative antagonist), efaroxan (I1-IR antagonist), as well as with the endogenous IR agonists agmatine and harmane. It was found that moxonidine and rilmenidine at clinically relevant doses, similarly to the other IR ligands, do not have a significant impact on the macroscopic and histological signs of DSS-evoked inflammation. Likewise, colonic myeloperoxidase and serum interleukin-6 levels remained unchanged in response to these agents. Thus, our study demonstrates that imidazoline ligands do not influence significantly the severity of DSS-colitis in mice and suggest that they probably neither affect the course of IBD in humans. However, the translational value of these findings needs to be verified with other experimental colitis models and human studies.


Subject(s)
Colitis/drug therapy , Colitis/metabolism , Dextran Sulfate/toxicity , Imidazoline Receptors/metabolism , Imidazolines/metabolism , Imidazolines/therapeutic use , Animals , Colitis/chemically induced , Female , Ligands , Mice , Mice, Inbred C57BL , Treatment Outcome
20.
J Pharmacol Exp Ther ; 358(3): 483-91, 2016 09.
Article in English | MEDLINE | ID: mdl-27418171

ABSTRACT

It has been hypothesized that α2-adrenoceptors (α2-ARs) may be involved in the pathomechanism of colitis; however, the results are conflicting because both aggravation and amelioration of colonic inflammation have been described in response to α2-AR agonists. Therefore, we aimed to analyze the role of α2-ARs in acute murine colitis. The experiments were carried out in wild-type, α2A-, α2B-, and α2C-AR knockout (KO) C57BL/6 mice. Colitis was induced by dextran sulfate sodium (DSS, 2%); alpha2-AR ligands were injected i.p. The severity of colitis was determined both macroscopically and histologically. Colonic myeloperoxidase (MPO) and cytokine levels were measured by enzyme-linked immunosorbent assay and proteome profiler array, respectively. The nonselective α2-AR agonist clonidine induced a modest aggravation of DSS-induced colitis. It accelerated the disease development and markedly enhanced the weight loss of animals, but did not influence the colon shortening, tissue MPO levels, or histologic score. Clonidine induced similar changes in α2B- and α2C-AR KO mice, whereas it failed to affect the disease activity index scores and caused only minor weight loss in α2A-AR KO animals. In contrast, selective inhibition of α2A-ARs by BRL 44408 significantly delayed the development of colitis; reduced the colonic levels of MPO and chemokine (C-C motif) ligand 3, chemokine (C-X-C motif) ligand 2 (CXCL2), CXCL13, and granulocyte-colony stimulating factor; and elevated that of tissue inhibitor of metalloproteinases-1. In this work, we report that activation of α2-ARs aggravates murine colitis, an effect mediated by the α2A-AR subtype, and selective inhibition of these receptors reduces the severity of gut inflammation.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/pharmacology , Colitis/chemically induced , Colitis/drug therapy , Dextran Sulfate/pharmacology , Intestines/drug effects , Receptors, Adrenergic, alpha-2/metabolism , Adrenergic alpha-2 Receptor Antagonists/therapeutic use , Animals , Clonidine/pharmacology , Clonidine/therapeutic use , Colitis/metabolism , Colitis/physiopathology , Drinking/drug effects , Female , Gene Knockout Techniques , Imidazoles/pharmacology , Imidazoles/therapeutic use , Intestinal Mucosa/metabolism , Intestines/pathology , Isoindoles/pharmacology , Isoindoles/therapeutic use , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Receptors, Adrenergic, alpha-2/deficiency , Receptors, Adrenergic, alpha-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...