Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 21(12): 2343-2358, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33969368

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and the most aggressive type of primary brain malignancy. Glioblastoma stem-like cells (GSCs) can migrate in vascular niches within or away from the tumour mass, increasing tumour resistance to treatments and contributing to relapses. To study individual GSC migration and their interactions with the perivasculature of the tumour microenvironment, there is a need to develop a human organotypic in vitro model. Herein, we demonstrated a perivascular niche-on-a-chip, in a serum-free condition with gravity-driven flow, that supported the stemness of patient-derived GSCs and foetal neural stem cells grown in a three-dimensional environment (3D). Endothelial cells from three organ origins, (i) human brain microvascular endothelial cells (hCMEC/D3), (ii) human umbilical vein endothelial cells (HUVECs) and, (iii) human lung microvascular endothelial cells (HMVEC-L) formed rounded microvessels within the extracellular-matrix integrated microfluidic chip. By optimising cell extraction protocols, systematic studies were performed to evaluate the effects of serum-free media, 3D cell cultures, and the application of gravity-driven flow on the characteristics of endothelial cells and their co-culture with GSCs. Our results showed the maintenance of adherent and tight junction markers of hCMEC/D3 in the serum-free culture and that gravity-driven flow was essential to support adequate viability of both the microvessel and the GSCs in co-culture (>80% viability at day 3). Endpoint biological assays showed upregulation of neovascularization-related genes (e.g., angiopoietins, vascular endothelial growth factor receptors) in endothelial cells co-cultured with GSCs in contrast to the neural stem cell reference that showed insignificant changes. The on-chip platform further permitted live-cell imaging of GSC - microvessel interaction, enabling quantitative analysis of GSC polarization and migration. Overall, our comparative genotypic (i.e. qPCR) and phenotypic (i.e. vessel permeability and GSC migration) studies showed that organotypic (brain cancer cells-brain endothelial microvessel) interactions differed from those within non-tissue specific vascular niches of human origin. The development and optimization of this on-chip perivascular niche, in a serum-free flowable culture, could provide the next level of complexity of an in vitro system to study the influence of glioma stem cells on brain endothelium.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Cell Line, Tumor , Endothelial Cells , Humans , Neoplastic Stem Cells , Tumor Microenvironment , Vascular Endothelial Growth Factor A
2.
Eur J Cell Biol ; 96(2): 218-226, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28094049

ABSTRACT

The production of Prostaglandin E2 (PGE2) is elevated in human breast cancer cells. The abnormal expression of COX-2, which is involved in the synthesis of PGE2, was recently reported as a critical determinant for invasiveness of human breast cancer cells. Autocrine and paracrine PGE2-mediated stimulation of the PGE2 receptor EP4 transduces multiple signaling pathways leading to diverse patho-physiological effects, including tumor cell invasion and metastasis. It is known that PGE2-induced EP4 activation can transactivate the intracellular signaling pathway of the epidermal growth factor receptor (EGFR). In malignant cancer cells, EGFR pathway activation promotes invadopodia protrusions, which further leads to degradation of the surrounding extracellular matrix (ECM). Despite the known influence of EP4 on the EGFR signaling pathway, the effect of EP4 stimulation on invadopodia formation in human breast cancer was never tested directly. Here we demonstrate the involvement of EP4 in invasion and its effect on invadopodia in breast cancer MDA-MB-231 cells using 2D invadopodia and 3D invasion in vitro assays as well as intravital microscopy. The results show that stimulation with the selective EP4 agonist CAY10598 or PGE2 promotes invadopodia-mediated degradation of the ECM, as well as the invasion of breast cancer cells in in vitro models. The effect on matrix degradation can be abrogated via direct inhibition of EP4 signaling as well as via inhibition of EGFR tyrosine kinase, indicating that EP4-mediated effects on invadopodia-driven degradation are EGFR dependent. Finally, using xenograft mouse models, we show that short-term systemic treatment with CAY10598 results in a >9-fold increase in the number of invadopodia. These findings highlight the importance of further investigation on the role of EP4-EGFR crosstalk in invadopodia formation.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Podosomes/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Dinoprostone/pharmacology , ErbB Receptors/metabolism , Female , Heterografts , Humans , Intravital Microscopy/methods , Mice , Mice, SCID , Neoplasm Invasiveness , Podosomes/drug effects , Podosomes/pathology , Pyrrolidinones/pharmacology , Receptors, Prostaglandin E, EP4 Subtype/agonists , Signal Transduction , Tetrazoles/pharmacology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...