Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 961474, 2022.
Article in English | MEDLINE | ID: mdl-36353103

ABSTRACT

Weaning represents one of the most critical periods in pig production associated with increase in disease risk, reduction in performance and economic loss. Physiological changes faced by piglets during the weaning period have been well characterised, however little is currently known about the underlying molecular pathways involved in these processes. As pig meat remains one of the most consumed sources of protein worldwide, understanding how these changes are mediated is critical to improve pig production and consequently sustainable food production globally. In this study, we evaluated the effect of weaning on transcriptomic changes in the colon of healthy piglets over time using an RNA-sequencing approach. The findings revealed a complex and coordinated response to weaning with the majority of genes found to be rapidly differentially expressed within 1 day post weaning. Multiple genes and pathways affected by weaning in the colon were associated with immune regulation, cell signalling and bacterial defence. NOD-like receptors, Toll-like receptor and JAK-STAT signalling pathways were amongst the pathways significantly enriched. Immune activation was evidenced by the enrichment of pathways involved in interferon response, cytokines interactions, oxidoreductase activities and response to microbial invasion. Biosynthesis of amino acids, in particular arginine, was also amongst the most enriched KEGG pathways in weaned pigs, reinforcing the critical role of arginine in gut homeostasis under stress conditions. Overall, transcriptomic and physiological results suggest that pigs going through the weaning transition undergo a transient period of inflammatory state with a temporary breakdown of barrier functions in the gut. These findings could provide valuable tools to monitor host response post weaning, and may be of particular relevance for the investigation and development of intervention strategies aimed to reduce antibiotic use and improve pig health and performance.

2.
BMC Microbiol ; 20(1): 107, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32357840

ABSTRACT

BACKGROUND: Footrot and interdigital dermatitis are endemic infectious diseases in all sheep farming regions, impairing welfare and production. The development of efficacious vaccines against the primary causative pathogen has been hampered by the extensive antigenic diversity of Dichelobacter nodosus. Understanding the heterogeneity of the pathogen within and between flocks is essential if the feasibility of bespoke vaccine production is to be assessed for use in the U.K. RESULTS: In this study 56 ewe and lamb isolates from 9 flocks were compared by D. nodosus serogroup and Multi Locus Sequence Type which provides significantly enhanced discriminatory power for molecular epidemiology. Serogroup heterogeneity between flocks ranged from two to five unique serogroups per flock. Three flocks contained isolates of two serogroups, two flocks contained isolates of three serogroups and one flock included isolates of five serogroups. Analysis of 25 isolates from one flock with high prevalence of lameness, identified that serogroup and sequence type was significantly correlated with age. Significantly higher proportion of lambs were infected with serogroup B (principally ST85) as opposed to serogroup H (principally ST86), which predominated amongst adult sheep. CONCLUSIONS: Genomic heterogeneity of the pathogen was significantly lower within flock compared to heterogenicity observed between flocks. Furthermore, this study indicates that within a flock, the host-pathogen dynamics and susceptibility to particular D. nodosus strains may be age dependent.


Subject(s)
Dichelobacter nodosus/classification , Genetic Heterogeneity , Gram-Negative Bacterial Infections/veterinary , Multilocus Sequence Typing/methods , Sheep Diseases/microbiology , Animals , Bacterial Typing Techniques , Dichelobacter nodosus/genetics , Dichelobacter nodosus/isolation & purification , Digital Dermatitis/microbiology , Female , Foot Rot/microbiology , Gram-Negative Bacterial Infections/microbiology , Phylogeny , Serogroup , Sheep , United Kingdom
3.
Vet Rec ; 179(9): 228, 2016 Sep 03.
Article in English | MEDLINE | ID: mdl-27317761

ABSTRACT

Ovine footrot is characterised by interdigital dermatitis (ID) and by the separation of the skin and hoof horn (under-running footrot). Dichelobacter nodosus is the essential pathogen causing footrot; the role of other microorganisms in this disease remains unclear. The aims of this study were (i) to investigate the colonisation of D nodosus, Fusobacterium necrophorum and Treponema species in biopsies from the ovine interdigital skin of healthy, ID and footrot-affected feet and (ii) to characterise the virulence of D nodosus strains in those biopsies. Postslaughter biopsy samples (n=241) were collected and analysed by real-time PCR to determine prevalence and load of the different bacterial species. The highest prevalence and load of D nodosus were found on feet with ID. The vast majority of samples contained virulent D nodosus and some samples contained both virulent and benign D nodosus Notably, the more pathogenic subspecies of F necrophorum was found in samples from UK sheep. Our findings provide further insights into the role bacterial colonisation may play in the early stage of ID and in the progression towards footrot.


Subject(s)
Foot Rot/microbiology , Sheep Diseases/microbiology , Animals , Dichelobacter nodosus/isolation & purification , Dichelobacter nodosus/pathogenicity , Fusobacterium necrophorum/isolation & purification , Fusobacterium necrophorum/pathogenicity , Sheep , Treponema/isolation & purification , Treponema/pathogenicity , Virulence
5.
Eur J Cell Biol ; 79(10): 659-71, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11089914

ABSTRACT

Y. enterocolitica translocates virulence proteins, called Yop effectors, into the cytosol of eukaryotic cells. Here we investigated whether Y. enterocolitica could translocate Yops into a range of eukaryotic cells including neurons and insect cells. Y. enterocolitica translocated the hybrid reporter protein YopE-Cya into each of the eukaryotic cell types tested. In addition, Y. enterocolitica was cytotoxic for each of the adherent cell types. Thus we detected no limit to the range of eukaryotic cells into which Y. enterocolitica can translocate Yops. The Yop effectors YopE, YopH and YopT were each cytotoxic for the adherent cell types tested, showing that not only is Y. enterocolitica not selective in its translocation of particular Yop effectors into each cell type, but also that the action of these Yop effectors is not cell type specific. Invasin and/or YadA, two powerful adhesins were required for translocation of Yop into non-phagocytic cells but not for translocation into macrophages. To use the Yersinia translocation system for broad applications, a Y. enterocolitica translocation strain and vector for the delivery of heterologous proteins into eukaryotic cells was constructed. This strain + vector combination lacks the translocated Yop effectors and allows delivery into eukaryotic cells of heterologous proteins fused to the minimal N-terminal secretion/translocation signal of YopE. Using this strategy translocation of a YopE-Diphtheria toxin subunit A hybrid protein into several cell types has been shown.


Subject(s)
Bacterial Translocation , Cell Culture Techniques/methods , Cytotoxins , Molecular Biology/methods , Yersinia enterocolitica/chemistry , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Amino Acid Sequence , Animals , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Base Sequence , Biological Transport , Cell Adhesion , Cell Survival , Cells, Cultured , Cysteine Endopeptidases , Endothelium, Vascular/cytology , Genes, Reporter , Genetic Vectors , HeLa Cells , Humans , Insecta , Macrophages/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Molecular Sequence Data , Mutation , Neurons/metabolism , Phagocytosis , Protein Tyrosine Phosphatases/metabolism , Translocation, Genetic , Umbilical Cord/cytology
6.
Mol Microbiol ; 37(5): 1005-18, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10972820

ABSTRACT

The Yersinia Ysc apparatus is made of more than 20 proteins, 11 of which have homologues in many type III systems. Here, we characterize YscP from Yersinia enterocolitica. This 515-residue protein has a high proline content, a large tandem repetition and a slow migration in SDS-PAGE. Unlike the products of neighbouring genes, it has a counterpart only in Pseudomonas aeruginosa and it varies even between Yersinia Ysc machineries. An yscPDelta97-465 mutant was unable to secrete any Yop, even under conditions overcoming feedback inhibition of Yop synthesis. Interestingly, a cloned yscPDelta57-324 from Yersinia pestis introduced in the yscPDelta97-465 mutant can sustain a significant Yop secretion and thus partially complemented the mutation. This explains the leaky phenotype observed with the yscP mutant of Y. pestis. In accordance with this secretion deficiency, YscP is required for the delivery of Yop effectors into macrophages. Mechanical shearing, immunolabelling and electron microscopy experiments showed that YscP is exposed at the bacterial surface when bacteria are incubated at 37 degrees C in the presence of Ca2+ and thus do not secrete Yops. At 37 degrees C, when Ca2+ ions are chelated, YscP is released like a Yop protein. We conclude that YscP is a part of the Ysc injectisome which is localized at the bacterial surface and is destabilized by Ca2+ chelation.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Calcium/metabolism , Membrane Proteins , Yersinia enterocolitica/metabolism , Bacterial Proteins/genetics , Biological Transport , Cell Membrane/metabolism , Cells, Cultured , Eukaryotic Cells/microbiology , Macrophages/cytology , Macrophages/metabolism , Macrophages/microbiology , Yersinia pestis/metabolism
7.
EMBO J ; 18(7): 1730-7, 1999 Apr 01.
Article in English | MEDLINE | ID: mdl-10202137

ABSTRACT

Mechanosensitive channels are ubiquitous amongst bacterial cells and have been proposed to have major roles in the adaptation to osmotic stress, in particular in the management of transitions from high to low osmolarity environments. Electrophysiological measurements have identified multiple channels in Escherichia coli cells. One gene, mscL, encoding a large conductance channel has previously been described, but null mutants were without well-defined phenotypes. Here, we report the characterization of a new gene family required for MscS function, YggB and KefA, which has enabled a rigorous test of the role of the channels. The channel determined by KefA does not appear to have a major role in managing the transition from high to low osmolarity. In contrast, analysis of mutants of E.coli lacking YggB and MscL shows that mechanosensitive channels are designed to open at a pressure change just below that which would cause cell disruption leading to death.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial , Ion Channels/genetics , Ion Channels/metabolism , Base Sequence , DNA Primers/genetics , Mutation , Osmotic Pressure , Protoplasts/metabolism
8.
Arch Microbiol ; 170(4): 209-18, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9732434

ABSTRACT

Methylglyoxal is a toxic electrophile. In Escherichia coli cells, the principal route of methylglyoxal production is from dihydroxyacetone phosphate by the action of methylglyoxal synthase. The toxicity of methylglyoxal is believed to be due to its ability to interact with the nucleophilic centres of macromolecules such as DNA. Bacteria possess an array of detoxification pathways for methylglyoxal. In E. coli, glutathione-based detoxification is central to survival of exposure to methylglyoxal. The glutathione-dependent glyoxalase I-II pathway is the primary route of methylglyoxal detoxification, and the glutathione conjugates formed can activate the KefB and KefC potassium channels. The activation of these channels leads to a lowering of the intracellular pH of the bacterial cell, which protects against the toxic effects of electrophiles. In addition to the KefB and KefC systems, E. coli cells are equipped with a number of independent protective mechanisms whose purpose appears to be directed at ensuring the integrity of the DNA. A model of how these protective mechanisms function will be presented. The production of methylglyoxal by cells is a paradox that can be resolved by assigning an important role in adaptation to conditions of nutrient imbalance. Analysis of a methylglyoxal synthase-deficient mutant provides evidence that methylglyoxal production is required to allow growth under certain environmental conditions. The production of methylglyoxal may represent a high-risk strategy that facilitates adaptation, but which on failure leads to cell death. New strategies for antibacterial therapy may be based on undermining the detoxification and defence mechanisms coupled with deregulation of methylglyoxal synthesis.


Subject(s)
Bacteria/metabolism , Escherichia coli Proteins , Pyruvaldehyde/metabolism , Antiporters/metabolism , Bacteria/enzymology , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Escherichia coli/chemistry , Escherichia coli/enzymology , Escherichia coli/physiology , Glutathione/metabolism , Glycolysis/physiology , Potassium Channels/metabolism , Potassium-Hydrogen Antiporters , Sigma Factor/metabolism
9.
Mol Microbiol ; 27(3): 553-62, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9489667

ABSTRACT

The enzyme methylglyoxal synthase (MGS) was partially purified from Escherichia coli extracts, and the amino-terminal sequence of candidate proteins was determined, based on the native protein being a tetramer of about 69 kDa. Database analysis identified an open reading frame in the E. coli genome, YccG, corresponding to a protein of 16.9 kDa. When amplified and expressed from a controlled promoter, it yielded extracts that contained high levels of MGS activity. MGS expressed from the trc promoter accumulated to approximately 20% of total cell protein, representing approximately 900-fold enhanced expression. This caused no detriment during growth on glucose, and the level of methylglyoxal (MG) in the medium rose to only 0.08 mM. High-level expression of MGS severely compromised growth on xylose, arabinose and glycerol. A mutant lacking MGS was constructed, and it grew normally on a range of carbon sources and on low-phosphate medium. However, the mutant failed to produce MG during growth on xylose in the presence of cAMP, and growth was inhibited.


Subject(s)
Carbon-Oxygen Lyases/genetics , Carbon-Oxygen Lyases/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Pyruvaldehyde/metabolism , Carbon-Oxygen Lyases/isolation & purification , Escherichia coli/chemistry , Escherichia coli/growth & development , Gene Expression Regulation, Bacterial , Genes, Bacterial , Glucose/metabolism , Glycerol/metabolism , Molecular Sequence Data , Open Reading Frames , Phosphates/metabolism , Plasmids/genetics , Xylose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...