Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 1676, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717728

ABSTRACT

Spiro[benzo[h]quinoline-7,3'-indoline]diones and spiro[indoline-3,4'-pyrazolo[3,4-b]quinoline]diones were efficiently synthesized via one-pot multi-component reactions under ultrasound-promoted conditions. Spiro[benzo[h]quinoline-7,3'-indoline]dione derivatives were successfully developed by the reaction of isatins, naphthalene-1-amine and 1,3-dicarbonyl compounds. The spiro[indoline-3,4'-pyrazolo[3,4-b]quinoline]dione derivatives were prepared by the reaction of isatins, 5-amino-1-methyl-3-pheylpyrazole, and 1,3-dicarbonyl compounds by using ( ±)-camphor-10-sulfonic acid as a catalyst in H2O/EtOH (3:1 v/v) solvent mixture. The antibacterial activity of the synthesized compounds was evaluated against, Enterococcus faecalis, Staphylococcus aureus and Candida albicans. Compounds 4b, 4h, and 6h showed the strongest antimicrobial activity toward both bacteria. The MIC values of these compounds ranged from 375-3000 µg/mL. The effect of these compounds (4b, 4h, 6h) as a function of applied dose and time was investigated by a kinetic study, and the interaction with these antimicrobial results was simulated by a molecular docking study. We also used the docking approach with Covid-19 since secondary bacterial infections. Docking showed that indoline-quinoline hybrid compounds 4b and 4h exerted the strongest docking binding value against the active sites of 6LU7. In addition, the synthesized compounds had a moderate to good free radical scavenging activity.


Subject(s)
COVID-19 , Quinolines , Humans , Molecular Docking Simulation , Quinolines/pharmacology , Quinolines/chemistry , Anti-Bacterial Agents/pharmacology
2.
Bioorg Chem ; 95: 103476, 2020 01.
Article in English | MEDLINE | ID: mdl-31838288

ABSTRACT

A novel series of the 2-pyridine substituted 3a-e and 4-pyridine substituted 4a-e thiazole derivatives were synthesized, characterized, and evaluated for the biological activity. Crystallographic parameters and inter- and intramolecular interactions of 3a and 3c single crystals were examined through XRD analysis. The chemical reactivity potentials of the compounds were evaluated, by comparing with a theoretical approach based on DFT. The biological activity properties of synthesized compounds were determined by antimicrobial activity with Gram positive, Gram negative, Yeast via minimal inhibitory concentration (MIC) method and DNA cleavage activity studies. The most obvious findings to emerge from this study are that on the basis of both biological activity and chemical reactivity 4-pyridine thiazole hybrid compounds 4a-e showed more potent activity than 3a-e. In general, the antimicrobial activity of synthesized compounds follows the Bacillus cereus > Staphylococcus aureus > Candida albicans > Escherichia coli > Pseudomonas aeruginosa. The most potent compound 4c (MIC values 0.02 mM) exhibited antimicrobial activity against Staphylococcus aureus and Bacillus cereus. Furthermore, this compound has a good electrophilicity index value (4.56 eV).


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Density Functional Theory , Pyridines/pharmacology , Thiazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Bacillus cereus/drug effects , Candida albicans/drug effects , DNA Cleavage , DNA, Bacterial/drug effects , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Molecular Structure , Pseudomonas aeruginosa/drug effects , Pyridines/chemistry , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...