Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 29(11): 1600-6, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16922276

ABSTRACT

A simple, rapid, and selective on-line method for the speciation and determination of Cr(III) and Cr(VI) in aqueous solutions by ion-pairing HPLC coupled with flame atomic absorption spectrometry (FAAS) is described. The composition of the mobile phase has been optimized for better separation. The effects of column temperature, volume of injection loop, fuel flow rate of FAAS, and nebulizer suction rate of FAAS have also been investigated. Separation is accomplished in almost 2.5 min on a 25 cm length C18 column at 40 degrees C. The selectivity of the method has been established by investigating the effect of interfering elements on chromium determination. The detection limit (3sigma) achieved by the method was calculated as 3.7 ng/mL for Cr(III) and 2.0 ng/mL for Cr(VI). The proposed method has been validated by analyzing certified reference material (BCR 544) and successfully applied to the analysis of drinking water and wastewater samples with a relative error below 6%.

2.
J Hazard Mater ; 129(1-3): 130-6, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16198051

ABSTRACT

Lead and nickel were preconcentrated as their ethylenediaminetetraacedic acid (EDTA) complexes from aqueous sample solutions using a column containing Ambersorb-572 and determined by flame atomic absorption spectrometry (FAAS). pH values, amount of solid phase, elution solution and flow rate of sample solution have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of Pb and Ni under the optimum conditions were 99 +/- 2 and 97 +/- 3%, respectively, at 95% confidence level. Seventy-five-fold (using 750 mL of sample solution and 10 mL of eluent) and 50-fold (using 500 mL of sample solution and 10 mL of eluent) preconcentration was obtained for Pb and Ni, respectively. Time of analysis is about 4.5 h (for obtaining enrichment factor of 75). By applying these enrichment factors, the analytical detection limits of Pb and Ni were found as 3.65 and 1.42 ng mL(-1), respectively. The capacity of the sorbent was found as 0.17 and 0.21 mmol g(-1) for Pb and Ni, respectively. The interferences of some cations, such as Mn2+, Co2+, Fe3+, Al3+, Zn2+, Cd2+, Ca2+, Mg2+, K+ and Na+ usually present in water samples were also studied. This procedure was applied to the determination of lead and nickel in parsley, green onion, sea water and waste water samples. The accuracy of the procedure was checked by determining Pb and Ni in standard reference tea leaves sample (GBW-07605). The results demonstrated good agreement with the certified values.


Subject(s)
Food Contamination/analysis , Lead/analysis , Nickel/analysis , Water Pollutants, Chemical/analysis , Adsorption , Edetic Acid , Industrial Waste , Resins, Synthetic , Spectrophotometry, Atomic , Vegetables/chemistry
3.
Talanta ; 69(4): 835-40, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-18970645

ABSTRACT

This work assesses the potential of a new adsorptive material, Amberlyst 36, for the separation and preconcentration of trace manganese(II) from various media. It is based on the sorption of manganese(II) ions onto a column filled with Amberlyst 36 cation exchange resin, followed by the elution with 5mL of 3mol/L nitric acid and determination by flame atomic absorption spectrometry (FAAS) without interference of the matrix. Different factors including pH of sample solution, sample volume, amount of resin, flow rate of sample solution, volume and concentration of eluent, and matrix effects for preconcentration were investigated. Good relative standard deviation (3%) and high recovery (>95%) at 100mug/L and high enrichment factor (200) and low analytical detection limit (0.245mug/L) were obtained. The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 88mg/g of manganese on the resin. The method was applied for the manganese determination by FAAS in tap water, commercial natural drinking water, commercial treated drinking water and commercial tea bag sample. The accuracy of the method is confirmed by analyzing the certified reference material (tea leaves GBW 07605). The results demonstrated good agreement with the certified values.

4.
Talanta ; 65(4): 938-45, 2005 Feb 28.
Article in English | MEDLINE | ID: mdl-18969892

ABSTRACT

A microorganism Agrobacterium tumefacients as an immobilized cell on a solid support was presented as a new biosorbent for the enrichment of Fe(III), Co(II), Mn(II) and Cr(III) prior to flame atomic absorption spectrometric analysis. Amberlite XAD-4 was used as a support material for column preconcentration. Various parameters such as pH, amount of adsorbent, eluent type and volume, flow rate of sample solution, volume of sample solution and matrix interference effect on the retention of the metal ions have been studied. The optimum pH for the sorption of above mentioned metal ions were about 6, 8, 8 and 6, respectively. The loading capacity of adsorbent for Co(II) and Mn(II) were found to be 29 and 22mumolg(-1), respectively. The recoveries of Fe(III), Co(II), Mn(II) and Cr(III), under the optimum conditions were found to be 99 +/- 3, 99 +/- 2, 98 +/- 3 and 98 +/- 3%, respectively, at the 95% confidence level. The limit of detection was 3.6, 3.0, 2.8 and 3.6ngml(-1) for Fe(III), Co(II), Mn(II) and Cr (III), respectively, by applying a preconcentration factor of 25. The proposed enrichment method was applied for metal ion determination from water samples, alloy samples, infant foods and certified samples such as whey powder (IAEA-155) and aluminum alloy (NBS SRM 85b). The analytes were determined with a relative error lower than 10% in all samples.

5.
Anal Sci ; 20(2): 329-34, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15055961

ABSTRACT

A sensitive solid-phase extraction technique (SPE) for the enrichment of Fe(III), Co(II), Mn(II) and Cr(III) prior to atomic absorption spectrometric analysis is described. Escherichia coli immobilized on Amberlite XAD-4 was used as a solid-phase extractor. The effects of the pH, amount of solid-phase, eluent type and volume of the sample solution on the recovery of the metal ions were investigated. The effect of diverse ions was also investigated. The recoveries of Fe(III), Co(II), Mn(II) and Cr(III) under the optimum conditions were found to be 99 +/- 2, 99 +/- 3, 98 +/- 2, 98 +/- 3%, respectively, at the 95% confidence level. The detection limits of the metal ions were found as to be 2.4, 3.8, 1.3 and 1.7 ng ml(-1) for Fe(II), Co(II), Mn(II) and Cr(III) respectively, by applying a preconcentration factor of 25. The proposed enrichment method was applied to the determination of analytes in Atatürk Dam water samples, and alloy samples (RSD < 5%). The accuracy of the method was verified on certified alloy samples (NBS SRM 85b and NBS SRM 59a). The analytes were determined with a relative error lower than 5% in water and alloy samples.


Subject(s)
Escherichia coli , Metals/analysis , Polystyrenes/chemistry , Polyvinyls/chemistry , Spectrophotometry, Atomic/instrumentation , Hydrogen-Ion Concentration , Sensitivity and Specificity , Spectrophotometry, Atomic/methods
6.
Anal Sci ; 18(8): 917-21, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12200840

ABSTRACT

A solid-phase extraction method for the preconcentration of Fe, Mn and Zn on a column containing Ambersorb 572 has been developed, and the determination of Fe, Mn and Zn in water using a flame atomic absorption spectrophotometer (FAAS) has been performed. The optimum preconcentration parameters of the procedure have been determined. The effect of the pH, complexing agent, amount of adsorbent, flow rate, concentration and volume of the elution solution and interfering ions on the recovery of the analytes were investigated. The recoveries of Fe, Mn and Zn were 99 +/- 3%, 98 +/- 3% and 99 +/- 3% at the 95% confidence level, respectively, under the optimum conditions. Fe, Mn and Zn were preconcentrated up to 50, 100, 200, respectively. The limits of detection of Fe, Mn and Zn are 2.5, 0.68 and 0.24 micrograms l-1, respectively. The adsorption capacity of the adsorbent was found to be 10.9, 13.1 and 21.5 mg g-1 for Fe, Mn and Zn, respectively. The method has been applied to the determination of these metal ions in tap-water and river-water samples. The precision and the accuracy of the method is very good. The relative standard deviation and the relative error are lower than 4%.


Subject(s)
Fresh Water/analysis , Trace Elements/analysis , Hydrogen-Ion Concentration , Iron/analysis , Manganese/analysis , Metals, Heavy/analysis , Resins, Synthetic/chemistry , Spectrophotometry, Atomic/methods , Water Supply/analysis , Zinc/analysis
7.
Talanta ; 57(6): 1199-204, 2002 Jul 19.
Article in English | MEDLINE | ID: mdl-18968726

ABSTRACT

A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO(4). Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l(-1) H(2)SO(4) solution in methanol. The recovery of Cr(VI) was 99.7+/-0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 mug l(-1). The adsorption capacity of the resin was found as 0.4 mg g(-1) for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.

SELECTION OF CITATIONS
SEARCH DETAIL
...