Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(10): 103603, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32955324

ABSTRACT

Extinction of light by material particles stems from losses incurred by absorption or scattering. The extinction cross section is usually treated as an additive quantity, leading to the exponential laws that govern the macroscopic attenuation of light. In this Letter, we demonstrate that the extinction cross section of a large gold nanoparticle can be substantially reduced-i.e., the particle becomes more transparent-if a single molecule is placed in its near field. This partial cloaking effect results from a coherent plasmonic interaction between the molecule and the nanoparticle, whereby each of them acts as a nanoantenna to modify the radiative properties of the other.

2.
Nano Lett ; 17(8): 4941-4945, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28671833

ABSTRACT

The feasibility of many proposals in nanoquantum-optics depends on the efficient coupling of photons to individual quantum emitters, the possibility to control this interaction on demand, and the scalability of the experimental platform. To address these issues, we report on chip-based systems made of one-dimensional subwavelength dielectric waveguides (nanoguides) and polycyclic aromatic hydrocarbon molecules. We discuss the design and fabrication requirements, present data on extinction spectroscopy of single molecules coupled to a nanoguide mode, and show how an external optical beam can switch the propagation of light via a nonlinear optical process. The presented architecture paves the way for the investigation of many-body phenomena and polaritonic states and can be readily extended to more complex geometries for the realization of quantum integrated photonic circuits.

3.
Opt Express ; 25(5): 5397-5414, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28380801

ABSTRACT

Nanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.44 µm, with a Q-factor of 27,900, near-unity emitter-waveguide coupling efficiencies and emission enhancements on the order of 1300 can be achieved. By tuning the ring geometry or introducing losses, we show that realistic emitter-ring systems can be made to be either weakly or strongly coupled, so that we can observe Rabi oscillations in the decay dynamics even for micron-sized rings. Moreover, we demonstrate that slot waveguide rings can be used to directionally couple emission, again with near-unity efficiency. Our results pave the way for integrated solid-state quantum circuits involving various emitters.

4.
Phys Rev Lett ; 113(21): 213601, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25479493

ABSTRACT

Many of the currently pursued experiments in quantum optics would greatly benefit from a strong interaction between light and matter. Here, we present a simple new scheme for the efficient coupling of single molecules and photons. A glass capillary with a diameter of 600 nm filled with an organic crystal tightly guides the excitation light and provides a maximum spontaneous emission coupling factor (ß) of 18% for the dye molecules doped in the organic crystal. A combination of extinction, fluorescence excitation, and resonance fluorescence spectroscopy with microscopy provides high-resolution spatiospectral access to a very large number of single molecules in a linear geometry. We discuss strategies for exploring a range of quantum-optical phenomena, including polaritonic interactions in a mesoscopic ensemble of molecules mediated by a single mode of propagating photons.

5.
Phys Rev Lett ; 110(13): 137602, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23581373

ABSTRACT

We report new phenomena in low-field 1H nuclear magnetic resonance (NMR) spectroscopy using parahydrogen induced polarization (PHIP), enabling determination of chemical shift differences, δν, and the scalar coupling constant J. NMR experiments performed with thermal polarization in millitesla magnetic fields do not allow the determination of scalar coupling constants for homonuclear coupled spins in the inverse weak coupling regime (δν

6.
Chemphyschem ; 13(18): 4120-3, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23161842

ABSTRACT

Welcome to the guest zone: By combining hyperpolarized xenon and simple low-field NMR devices it is possible to obtain more control over hydrogels that show potential as drug delivery systems. An alternative way of polymer swelling-degree determination is demonstrated with real-time NMR analysis. An ideal region for solvent uptake can be defined in which the absorbed solvent molecules are completely confined in the nano-porous network of the hydrogel.


Subject(s)
Hydrogels/chemistry , Polymers/chemistry , Xenon/chemistry , Acrylamides/chemistry , Acrylic Resins , Drug Delivery Systems/methods , Magnetic Resonance Imaging/methods , Noble Gases/chemistry , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...