Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 86(11): 2861-2877, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36515194

ABSTRACT

The herculean imprecation of nitrogen-based pollutant like ammoniacal nitrogen (AN) and chemical oxygen demand (COD) on aquatic milieu is now a concern for the dye, pharma and fertiliser industries. Wastewater from these is characterised with high concentration of AN, COD and total dissolved solids (TDS), treatment of which is of utmost importance for a cleaner environment. In the current research work, an attempt was made to apply integrated electro-coagulation (EC) - sonication process for the removal of COD and AN from highly acidic dye intermediate wastewater containing high to very high concentration of COD and AN. Systematic laboratory experiments were conducted for the treatment of dye intermediate wastewater and influences of pH (5-11), applied voltage (0.5-4V) and electrolysis time (30-120 min) were investigated. A Response Surface Methodology (RSM) was used for optimization of major operating parameters for EC. The conditions for minimum fraction remaining (C/C0), was found to be same for both COD and AN, i.e. pH 7, time 90 min and applied voltage 2V. The C/Co value for COD and AN were 0.244 and 0.302, respectively. The C/Co value of COD and AN in combined EC-Sonication process with optimum operating conditions were 0.145 and 0.228 respectively with sonication time 60 min at a frequency of 33 kHz. Thus, EC - sonication process is an efficacious process for their removal from dye industrial wastewater.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Waste Disposal, Fluid/methods , Nitrogen , Carbon , Electrocoagulation/methods , Industrial Waste/analysis , Electrodes
2.
Water Sci Technol ; 86(9): 2157-2174, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36378172

ABSTRACT

In recent years industrialization has caused magnificent leaps in the high profitable growth of pharmaceutical industries, and simultaneously given rise to environmental pollution. Pharmaceutical processes like extraction, purification, formulation, etc., generate a large volume of wastewater that contains high chemical oxygen demand (COD), biological oxygen demand, auxiliary chemicals, and different pharmaceutical substances or their metabolites in their active or inactive form. Its metabolites impart non-biodegradable toxic pollutants as a byproduct and intense color, which increases ecotoxicity into the water, thus this requires proper treatment before being discharged. This study focuses on the feasibility analysis of the utilization of ultrasound cavitation (20 kHz frequency) together with a persulfate oxidation approach for the treatment of complex pharmaceutical effluent. Process parameters like pH, amplitude intensity, oxidant dosage were optimized for COD removal applying response surface methodology-based Box-Behnken design. The optimum value observed for pH, amplitude intensity and oxidant dosage are 5, 20% and 100 mg/L respectively with 39.5% removal of COD in 60 min of fixed processing time. This study confirms that a combination of ultrasound cavitation and persulfate is a viable option for the treatment of pharmaceutical wastewater and can be used as an intensification technology in existing effluent treatment plants to achieve the highest amount of COD removal.


Subject(s)
Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Waste Disposal, Fluid , Biological Oxygen Demand Analysis , Oxidation-Reduction , Oxidants , Pharmaceutical Preparations , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...